OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Đối với mỗi giá trị của tham số m, hãy xác định số nghiệm của phương trình: \(\sqrt {2\left| x \right| - {x^2}} = m\).

  bởi Dang Tung 22/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Với \(m < 0\) : Phương trình vô nghiệm

    Với \(m = 0\) : Phương trình có ba nghiệm \(x = 0 ; x = ±2.\)

    Với \(m > 0\) : Phương trình tương đương với

    \(\left| {{x^2}} \right| - 2\left| x \right| + {m^2} = 0.\)      (1)

    Xét phương trình \({y^2} - 2y + {m^2} = 0\)           (2)

    Có \(\Delta ' = 1 - {m^2}.\)

    - Nếu \(m > 1\) thì (2) vô nghiệm nên (1) vô nghiệm.

    - Nếu \(m = 1\) thì (2) có nghiệm \(y = 1\) nên (1) có hai nghiệm \(x = ±1.\)

    - Nếu \(0 < m < 1\) thì (2) có hai nghiệm dương

    \({y_1} = 1 + \sqrt {1 - {m^2}} ,{y_2} = 1 - \sqrt {1 - {m^2}} \)

    Suy ra (1) có bốn nghiệm phân biệt

    \(\begin{array}{l}{x_{1,2}} =  \pm \left( {1 + \sqrt {1 - {m^2}} } \right)\\{x_{3,4}} =  \pm \left( {1 - \sqrt {1 - {m^2}} } \right).\end{array}\)

      bởi Lê Nhật Minh 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF