OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Có tam giác ABC có G là trọng tâm, I là điểm thỏa mãn \(\overrightarrow {AI} = - \dfrac{1}{2}\overrightarrow {AC} \). Điểm M thỏa mãn \(\overrightarrow {AM} = x\overrightarrow {AB} \)( x là số thực). Hãy tìm x để M, G, I thẳng hàng.

A. \(x = \dfrac{1}{3}\)             B. \(x = 3\)       C. \(x = \dfrac{1}{5}\)            D. \(x = \dfrac{5}{3}\)

  bởi Anh Nguyễn 15/07/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • M, G, I thẳng hàng \( \Leftrightarrow \) tồn tại số k để \(\overrightarrow {IG}  = k\overrightarrow {IM} \)

    \(\begin{array}{l}\overrightarrow {IG}  = \dfrac{1}{3}\left( {\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC} } \right) = \dfrac{1}{3}\overrightarrow {IA}  + \dfrac{1}{3}\left( {\overrightarrow {IA}  + \overrightarrow {AB} } \right) + \dfrac{1}{3}\left( {\overrightarrow {IA}  + \overrightarrow {AC} } \right)\\ = \overrightarrow {IA}  + \dfrac{1}{3}\overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AC}  = \dfrac{5}{6}\overrightarrow {AC}  + \dfrac{1}{3}\overrightarrow {AB} \end{array}\)

    \(\overrightarrow {IM}  = \overrightarrow {IA}  + \overrightarrow {AM}  = \dfrac{1}{2}\overrightarrow {AC}  + x\overrightarrow {AB} \)

    Do đó \(\dfrac{5}{6}\overrightarrow {AC}  + \dfrac{1}{3}\overrightarrow {AB}  = k\left( {\dfrac{1}{2}\overrightarrow {AC}  + x\overrightarrow {AB} } \right) = \dfrac{k}{2}\overrightarrow {AC}  + kx\overrightarrow {AB} \).

    Đồng nhất hệ số ta được \(\left\{ \begin{array}{l}k = \dfrac{5}{3}\\x = \dfrac{1}{5}\end{array} \right.\)

      bởi Đan Nguyên 15/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF