OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

CM a/(b+c)+b/(a+c)+c/(a+b)>=3/2 bằng bđt Côsi

c/m bằng cách sử dụng côsi

a/(b+c)+b/(a+c)+c/(a+b)>=3/2

  bởi Phạm Hoàng Thị Trà Giang 02/11/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Giả sử điều cần chứng minh đúng thì:

    \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)

    \(\Rightarrow\dfrac{a}{b+c}+1+\dfrac{b}{a+c}+1+\dfrac{c}{a+b}+1\ge\dfrac{3}{2}+1+1+1=\dfrac{9}{2}\)

    \(\Rightarrow\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}\ge\dfrac{9}{2}\)

    \(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\ge\dfrac{9}{2}\)

    \(\Rightarrow\Rightarrow2\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\ge9\)

    \(\Rightarrow\left(a+b+c+a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\ge9\)

    Đặt: \(\left\{{}\begin{matrix}b+c=x\\a+c=y\\a+b=z\end{matrix}\right.\) Khi đó:

    \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)(đúng theo AM-GM)
    Ta có đpcm

      bởi Vũ Trung Đức 02/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF