OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh x^2/căn(x^3+8)+y^2/căn(y^3+8)+z^2/căn(z^3+8)>=1

Giúp mình với

Cho x, y, z là các số thực dương thỏa mãn xy+yz+zx=3. Chứng minh bất đẳng thức: \(\dfrac{x^2}{\sqrt{x^3+8}}+\dfrac{y^2}{\sqrt{y^3+8}}+\dfrac{z^2}{\sqrt{z^3+8}}\ge1\)
  bởi Nguyễn Hồng Tiến 05/11/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Lời giải:

    Ta có:

    \(3=xy+yz+xz\leq \frac{(x+y+z)^2}{3}\Rightarrow x+y+z\geq 3\)

    Áp dụng BĐT AM-GM:

    \(x^3+8=(x+2)(x^2-2x+4)\leq \left(\frac{x+2+x^2-2x+4}{2}\right)^2\)

    \(\Rightarrow \sqrt{x^3+8}\leq \frac{x^2-x+6}{2}\Rightarrow \frac{x^2}{\sqrt{x^3+8}}\geq \frac{2x^2}{x^2-x+6}\)

    Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

    \(\Rightarrow \text{VT}\geq \underbrace{2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)}_{M}\)

    Áp dụng BĐT Cauchy-Schwarz:

    \(M\geq \frac{2(x+y+z)^2}{x^2-x+6+y^2-y+6+z^2-z+6}=\frac{2(x+y+z)^2}{x^2+y^2+z^2-(x+y+z)+18}\)

    \(\Leftrightarrow M\geq \frac{2(x+y+z)^2}{(x+y+z)^2-(x+y+z)+12}\) (do $xy+yz+xz=3$)

    Mà :

    \(\frac{(x+y+z)^2}{(x+y+z)^2-(x+y+z)+12}-1=\frac{(x+y+z)^2+(x+y+z)-12}{(x+y+z)^2-(x+y+z)+12}=\frac{(x+y+z-3)(x+y+z+4)}{(x+y+z)^2-(x+y+z)+12}\geq 0\) do $x+y+z\geq 0$

    Do đó: \(M\geq 1\Rightarrow \text{VT}\geq 1\) (đpcm)

    Dấu bằng xảy ra khi \(x=y=z=1\)

      bởi Khánh Linh Hà 05/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF