OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh vtGA+vtGB+vtGC+vtGD+vtHA+vtHB+vtHC+vtHD=vt 0

Cho hbh ABCD .Gọi G,H lần lượt là trọng tâm của tam giác ABC và . C/m : vecto GA +vectoGB+vectoGC+vectoGD+vectoHA+vectoHB+vectoHC+vectoHD=vecto 0
=========================================================
HELP với mn!!

  bởi Bình Nguyen 05/11/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:

    Ta chứng minh bổ đề sau: với tam giác $ABC$ có $G$ là trọng tâm tam giác thì \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

    Thật vậy:

    Kéo dài $AG$ cắt $BC$ tại $G'$. Theo tính chất trọng tâm suy ra \(\overrightarrow{GA}+2\overrightarrow{GA'}=0\)

    \(\left\{\begin{matrix} \overrightarrow{GA'}=\overrightarrow{GB}+\overrightarrow{BA'}\\ \overrightarrow{GA'}=\overrightarrow{GC}+\overrightarrow{CA'}\end{matrix}\right.\Rightarrow 2\overrightarrow{GA'}=\overrightarrow{GB}+\overrightarrow{GC}+(\overrightarrow{BA'}+\overrightarrow{CA'})=\overrightarrow{GB}+\overrightarrow{GC}\)

    Do đó, \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\)

    Áp dụng vào bài toán, ta có:
    \(\left\{\begin{matrix} \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\\ \overrightarrow{HA}+\overrightarrow{HD}+\overrightarrow{HC}=\overrightarrow{0}\end{matrix}\right.\)

    \(\Rightarrow X=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}+\overrightarrow{HA}+\overrightarrow{HC}+\overrightarrow{HD}+\overrightarrow{HB}=\overrightarrow{GD}+\overrightarrow{HB}\)

    \(\Leftrightarrow X=\overrightarrow{GB}+\overrightarrow{BD}+\overrightarrow{HD}+\overrightarrow{DB}=\overrightarrow{HD}+\overrightarrow{GB}\)

    Gọi \(T'\) là trung điểm của $AC$ thì $D,H,T'$ thẳng hàng và $B,G,T'$ thẳng hàng hay cả $6$ điểm thẳng hàng

    Do đó \(\overrightarrow{HD},\overrightarrow{GB}\) là hai vector cùng phương, ngược hướng (theo chiều vẽ)

    Mặt khác dễ thấy tam giác $ADC$ và $CBA$ là hai tam giác bằng nhau, lại có hai trọng tâm lần lượt là \(H,G\) nên \(DH=BG\)

    Như vậy. \(\overrightarrow{HD}=-\overrightarrow{GB}\Leftrightarrow \overrightarrow{HD}+\overrightarrow{GB}=\overrightarrow{0}\Leftrightarrow X=\overrightarrow{0}\)

    Ta có đpcm.

      bởi Phạm Văn Thiệu 05/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF