Chứng minh rằng: \(\frac{1}{a^4(b+1)(c+1)}+\frac{1}{b^4(c+1)(a+1)}+\frac{1}{c^4(a+1)(b+1)}\geqslant \frac{3}{4}\)
Cho ba số thực dương a, b, c thỏa mãn abc=1. Chứng minh rằng: \(\frac{1}{a^4(b+1)(c+1)}+\frac{1}{b^4(c+1)(a+1)}+\frac{1}{c^4(a+1)(b+1)}\geqslant \frac{3}{4}\)
Câu trả lời (4)
-
Đặt \(\small x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\). Khi đó, VT (1) \(\small =\frac{x^3}{(y+1)(z+1)}=\frac{y^3}{(z+1)(x+1)}+\frac{z^3}{(x+1)(y+1)}\)
Theo Cô si ta có:
\(\small \frac{x^3}{(y+1)(z+1)}+\frac{y+1}{8}+\frac{z+1}{8}\geq \frac{3x}{4}\)
\(\small \frac{y^3}{(z+1)(x+1)}+\frac{z+1}{8}+\frac{x+1}{8}\geq \frac{3y}{4}\)
\(\small \frac{z^3}{(x+1)(y+1)}+\frac{x+1}{8}+\frac{y+1}{8}\geq \frac{3z}{4}\)
Cộng các bất đẳng thức trên vế với vế, ta được VT (1) \(\small \geq \frac{x+y+z}{2}-\frac{3}{4}\)
Mặt khác \(\small abc=1\) nên \(\small xyz=1\) đo đó \(\small x+y+z\geq 3\sqrt[3]{xyz}=3\) nên từ đó suy ra Đpcm
Dấu "=" xảy ra khi và chỉ khi \(\small a=b=c=1\)
bởi My Le 09/02/2017Like (0) Báo cáo sai phạm -
.bởi An Cam Đại 25/08/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời