OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh M=x/(x+y+z)+y/(x+y+t)+z/(y+z+t)+t/(x+z+t) không là số tự nhiên

Cho x,y,z,t \(\in\)N*.CMR giá trị của biểu thức

M=\(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\) không là số tự nhiên

  bởi Cam Ngan 27/02/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • \(M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)

    Ta có:

    \(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}>\dfrac{x}{x+y+z+t}\\\dfrac{y}{x+y+t}>\dfrac{y}{x+y+z+t}\\\dfrac{z}{y+z+t}>\dfrac{z}{x+y+z+t}\\\dfrac{t}{x+z+t}>\dfrac{t}{x+y+z+t}\end{matrix}\right.\) Cộng theo \(3\) vế ta có:

    \(M>\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}=1\)

    Lại có:

    \(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}< \dfrac{x+t}{x+y+z+t}\\\dfrac{y}{x+y+t}< \dfrac{y+z}{x+y+z+t}\\\dfrac{z}{y+z+t}< \dfrac{z+x}{x+y+z+t}\\\dfrac{t}{x+z+t}< \dfrac{t+y}{x+y+z+t}\end{matrix}\right.\)Cộng theo \(3\) vế ta có:

    \(M< \dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}=2\)Như vậy \(1< M< 2\Leftrightarrow M\notin N\left(đpcm\right)\)

      bởi Sarang Nam 27/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF