Chứng minh ít nhất 1 trong 2 pt x^2+ax+b=0 và x^2+cx+d=0 có nghiệm
Dùng phương pháp phản chứng minh cho 2 phương trình:
\(\left\{{}\begin{matrix}x^2+ax+b=0\\x^2+cx+d=0\end{matrix}\right.\)
biết rằng \(a.c\ge2\left(b+d\right)\)
Cmr: Ít nhất 1 trong 2 phương trình trên có nghiệm
Câu trả lời (1)
-
Lời giải:
Giả sử cả 2 pt trên đều không có nghiệm.
Khi đó:
\(\left\{\begin{matrix} \Delta_1=a^2-4b< 0\\ \Delta_2=c^2-4d< 0\end{matrix}\right.\)
\(\Rightarrow a^2+c^2< 4(b+d)\)
Kết hợp với đk: \(ac\geq 2(b+d)\Rightarrow 2ac> a^2+c^2\)
\(\Leftrightarrow a^2+c^2-2ca< 0\Leftrightarrow (a-c)^2< 0\) (vô lý)
Do đó điều giả sử là sai.
Tức là ít nhất 1 trong 2 pt trên phải có nghiệm.
bởi Nguyễn Thái Bảo 02/11/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời