OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh hàm số \(y = \dfrac{{2x - 1}}{{x + 1}}\) đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).

  bởi Dell dell 18/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Hàm số \(y = \dfrac{{2x - 1}}{{x + 1}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\) .

    Lấy \({x_1},{x_2} \in D,{x_1} \ne {x_2}\) .

    Lập tỉ số

    \(\begin{array}{l}k = \dfrac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}}\\\;\; = \dfrac{{\dfrac{{2{x_2} - 1}}{{{x_2} + 1}} - \dfrac{{2{x_1} - 1}}{{{x_1} + 1}}}}{{{x_2} - {x_1}}}\\\;\; = \dfrac{{\left( {2{x_2} - 1} \right)\left( {{x_1} + 1} \right) - \left( {2{x_1} - 1} \right)\left( {{x_2} + 1} \right)}}{{\left( {{x_2} - {x_1}} \right)\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}}\end{array}\)

    \(\begin{array}{l}\;\; = \dfrac{{3{x_2} - 3{x_1}}}{{\left( {{x_2} - {x_1}} \right)\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}}\\ \;\;= \dfrac{3}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}}\end{array}\)

    Nếu \({x_1},{x_2} \in \left( { - \infty ; - 1} \right)\) thì \({x_1} <  - 1,{x_2} <  - 1\) .Suy ra \({x_1} + 1 < 0,{x_2} + 1 < 0\) . Do đó \(k{\rm{ }} > {\rm{ }}0\). Vậy hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\) .

    Nếu \({x_1},{x_2} \in \left( { - 1; + \infty } \right)\) thì \({x_1} >  - 1,{x_2} >  - 1\). Suy ra \({x_1} + 1 > 0,{x_2} + 1 > 0\) . Do đó \(k{\rm{ }} > {\rm{ }}0\). Vây hàm số đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\)

      bởi Lê Nhi 19/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF