Chứng minh căn(c(a-c))+căn(c(b-c)) < = căn(ab)
Giúp mk vs mai mk có Toán rồi
1, Với a;b;c > 0 T/m a;b > 1 C/m :\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
2, với a;b > 1 C/m : \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Câu trả lời (1)
-
Bài 1:
Đặt \(\begin{array}{l} \sqrt c = \alpha \\ \sqrt {b - c} = \beta \\ \end{array}\) và \(\begin{array}{l} \sqrt {a - c} = x \\ \sqrt c = y \\ \end{array}\)
Áp dụng bất đẳng thức Bunhiacopxki
\(x\alpha + y\beta \le \left| {x\alpha + y\beta } \right| \le \sqrt {{x^2} + {y^2}} .\sqrt {{\alpha ^2} + {\beta ^2}}\)
\(\begin{array}{l} \Leftrightarrow \sqrt c .\sqrt {a - c} + \sqrt {b - c} .\sqrt c \le \sqrt {{{\left( {\sqrt c } \right)}^2} + {{\left( {\sqrt {b - c} } \right)}^2}} .\sqrt {{{\left( {\sqrt c } \right)}^2} + {{\left( {\sqrt {a - c} } \right)}^2}} \\ \Leftrightarrow \sqrt {c(a - c)} + \sqrt {c(b - c)} \le \sqrt {c + (a - c)} .\sqrt {c + (b - c)} \\ \Leftrightarrow \sqrt {c(a - c)} + \sqrt {c(b - c)} \le \sqrt b \sqrt a = \sqrt {ab} . \\ \end{array}\)
P/s: Mình gõ latex kém quá khó hiểu chỗ não thì cứ hỏi :)))
bởi Hường Hường 28/09/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời