OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh |a|-|b| < |a+b| < |a|+|b|

Chứng minh |a|-|b|< |a+b|<|a|+|b|

  bởi Thùy Trang 28/09/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta chứng minh \(\left|a\right|-\left|b\right|< \left|a+b\right|\)

    Nếu \(b>a\ge0\) hoặc \(b< a< 0\) thì ta có đpcm.

    Nếu \(a>b\ge0\) hoặc \(a< b< 0\) thì vế trái dương, ta xét

    \(\left(\left|a+b\right|\right)^2-\left(\left|a\right|-\left|b\right|\right)^2=\left(a^2+2ab+b^2\right)-\left(a^2-2\left|a\right|.\left|b\right|+b^2\right)=2ab+2\left|a\right|.\left|b\right|>0\)

    Suy ra \(\left(\left|a+b\right|\right)^2>\left(\left|a\right|-\left|b\right|\right)^2\) hay \(\left|a\right|-\left|b\right|< \left|a+b\right|\)

    Ta chứng minh \(\left|a+b\right|< \left|a\right|+\left|b\right|\)

    Vì vế phải không âm nên ta bình phương được \(\left(a+b\right)^2< \left(\left|a\right|+\left|b\right|\right)^2\Leftrightarrow2ab< 2\left|a\right|.\left|b\right|\) (luôn đúng)

    Vậy ta có đpcm.

      bởi Đặng Gia Thuận 28/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF