Chứng minh (a+b)^2(b+c)^2(c+a)^2>=4(a^2+bc)(b^2+ca)(c^2+ab)
Cho a,b,c là các số thực không âm thõa mãn điều kiện (a+b)(b+c)(c+a)=2
Tìm Max của P=(a2+bc)(b2+ca)(c2+ab)
Cho a,b,c là các số thực không âm. Chứng minh
\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge4\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)\)
Cho a,b,c là các số dương thõa mãn a+b+c=1. Chứng minh
\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\ge2\)
Câu trả lời (1)
-
Câu 1/
Không mất tính tổng quát ta giả sử \(a\le c\le b\) (đừng hỏi tại sao chọn c là số ở giữa. Thích thì mình chọn thôi).
\(\Rightarrow\left(a-c\right)\left(b-c\right)\le0\)
Ta có:\(\left(b+c\right)^2\left(c+a\right)^2=\left(c^2+ab+bc+ca\right)^2\)
\(\ge4\left(c^2+ab\right)\left(bc+ca\right)\)
\(\Rightarrow4=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge4c\left(a+b\right)^2\left(c^2+ab\right)\left(bc+ca\right)\)
\(\Leftrightarrow c\left(a+b\right)^3\left(c^2+ab\right)\le1\)
Ta cần chứng minh:
\(\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)\le c\left(a+b\right)^3\left(c^2+ab\right)\)
\(\Leftrightarrow ab\left[\left(a-c\right)\left(b-c\right)-2ac-2bc\right]\le0\) (đúng)
Vậy ta có ĐPCM
bởi Lê Nhất Trúc 23/10/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời