OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh a^3+b^3+c^3+15/4abc>=27/4

cho a,b,c>0 và a+b+c=3 cmr

\(a^3+b^3+c^3+\dfrac{15}{4}abc\ge\dfrac{27}{4}\)

  bởi Lê Thánh Tông 02/11/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:
    Ta có:

    \(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)

    \(=27-3(3-a)(3-b)(3-c)\)

    \(=27-3[27-9(a+b+c)+3(ab+bc+ac)-abc]\)

    \(=27-3[3(ab+bc+ac)-abc]=27-9(ab+bc+ac)+3abc\)

    Do đó:

    \(A=a^3+b^3+c^3+\frac{15}{4}abc=27-9(ab+bc+ac)+\frac{27}{4}abc(*)\)

    Áp dụng BĐT Schur :

    \(abc\geq (a+b-c)(b+c-a)(c+a-b)\)

    \(\Leftrightarrow abc\geq (3-2a)(3-2b)(3-2c)\)

    \(\Leftrightarrow abc\geq 27-18(a+b+c)+12(ab+bc+ac)-8abc\)

    \(\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27\)

    \(\Leftrightarrow 3abc\geq 4(ab+bc+ac)-9\)

    \(\Rightarrow \frac{27}{4}abc\geq 9(ab+bc+ac)-\frac{81}{4}(**)\)

    Từ \((*); (**)\Rightarrow A\geq 27-\frac{81}{4}=\frac{27}{4}\) (đpcm)

    Dấu bằng xảy ra khi \(a=b=c=1\)

      bởi lê thị hoa 02/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF