Chứng minh a^3+b^3+c^3+15/4abc>=27/4
cho a,b,c>0 và a+b+c=3 cmr
\(a^3+b^3+c^3+\dfrac{15}{4}abc\ge\dfrac{27}{4}\)
Câu trả lời (1)
-
Lời giải:
Ta có:\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)
\(=27-3(3-a)(3-b)(3-c)\)
\(=27-3[27-9(a+b+c)+3(ab+bc+ac)-abc]\)
\(=27-3[3(ab+bc+ac)-abc]=27-9(ab+bc+ac)+3abc\)
Do đó:
\(A=a^3+b^3+c^3+\frac{15}{4}abc=27-9(ab+bc+ac)+\frac{27}{4}abc(*)\)
Áp dụng BĐT Schur :
\(abc\geq (a+b-c)(b+c-a)(c+a-b)\)
\(\Leftrightarrow abc\geq (3-2a)(3-2b)(3-2c)\)
\(\Leftrightarrow abc\geq 27-18(a+b+c)+12(ab+bc+ac)-8abc\)
\(\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27\)
\(\Leftrightarrow 3abc\geq 4(ab+bc+ac)-9\)
\(\Rightarrow \frac{27}{4}abc\geq 9(ab+bc+ac)-\frac{81}{4}(**)\)
Từ \((*); (**)\Rightarrow A\geq 27-\frac{81}{4}=\frac{27}{4}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
bởi lê thị hoa
02/11/2018
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



