OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh 3 điểm B,I,K thẳng hàng biết AK = 1/3 AC và I là trung điểm AM

cho một tam giác ABC có trung tuyến AM . Lấy K thuộc AC sao cho AK = 1/3 AC. I là trung điểm AM .

a, phân tích 2 vectơ BK và BI theo 2 vectơ \(\overrightarrow{a}=\overrightarrow{BA},\overrightarrow{b}=\overrightarrow{BC}\)

b, chưngs minh B,I,K thẳng hàng

  bởi hà trang 02/11/2018
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}=\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{AC}=\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{BC}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}=\dfrac{1}{3}\left(2\overrightarrow{a}+\overrightarrow{b}\right)\left(1\right)\)\(\overrightarrow{BI}=\overrightarrow{BA}+\overrightarrow{AI}=\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{AM}=\overrightarrow{BA}+\dfrac{1}{2}.\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\overrightarrow{BA}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{BA}+\dfrac{1}{4}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)=\dfrac{3}{4}\overrightarrow{BA}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{BC}=\dfrac{2}{4}\overrightarrow{BA}+\dfrac{1}{4}\overrightarrow{BC}=\dfrac{1}{4}\left(2\overrightarrow{a}+\overrightarrow{b}\right)\left(2\right)\)từ (1) và (2) -> \(\overrightarrow{BK}và\overrightarrow{BI}\) cùng phương -> B,K,I thẳng hàngundefined

      bởi Buồn's Măt's 02/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF