OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho tam giác \(ABC\) nội tiếp trong đường tròn \((O)\) và một điểm \(M\) sao cho các góc \(AMB, BMC, CMA\) đều bằng \(120^0\). Các đường thẳng \(AM, BM, CM\) cắt đường tròn \((O)\) lần lượt tại \(A’, B’, C’\). Chứng minh rằng: \(MA+MB+MC\)\(=MA’+MB’+MC’.\)

  bởi Anh Thu 22/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  •  

    Lấy các điểm \(A_1, B_1, C_1\) sao cho \(\overrightarrow {M{A_1}}  = \dfrac{{\overrightarrow {MA} }}{{MA}};\)  \(  \overrightarrow {M{B_1}}  = \dfrac{{\overrightarrow {MB} }}{{MB}};\) \(\overrightarrow {M{C_1}}  = \dfrac{{\overrightarrow {MC} }}{{MC}} \), khi đó cả ba vec tơ trên đều có độ  dài bằng 1, mà góc giữa hai vectơ bất kì trong chúng đều bằng \(120^0\) nên \(M\) là tâm của tam giác đều \(A_1 B_1 C_1\).

    Theo bài 24, ta có

    \(2\overrightarrow {MA} .\overrightarrow {MO}\)

    \(  = MA(MA - MA')\), suy ra \(2\dfrac{{\overrightarrow {MA} }}{{MA}}.\overrightarrow {MO} \)

    \(= MA - MA'\),

    hay \(2\overrightarrow {M{A_1}} .\overrightarrow {MO}  = MA - MA'\).

    Tương tự

    \(2\overrightarrow {M{B_1}} .\overrightarrow {MO}  = MB - MB',\)  \( 2\overrightarrow {M{C_1}} .\overrightarrow {MO}  = MC - MC'.\)

    Từ đó ta có

    \(MA + MB + MC\)\( - MA' - MB' - MC' \)

    \(= 2(\overrightarrow {M{A_1}}  + \overrightarrow {M{B_1}}  + \overrightarrow {M{C_1}} ).\overrightarrow {MO}  = 0\)

    Hay

    \(MA + MB + MC\)\( = MA' + MB' + MC'\)

      bởi Phạm Hoàng Thị Trà Giang 23/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF