Cho tam giác ABC có \(AB = c,AC = b\)(với \(b \ne c\)), phân giác trong AD = k (D nằm trên cạnh BC), BD = d, CD = e. Chứng minh hệ thức: \({k^2} = bc - de\).
Câu trả lời (1)
-
Ta có AD là phân giác trong góc A của tam giác ABC nên \(\widehat {BAD} = \widehat {DAC}\)
\( \Rightarrow \cos \widehat {BAD} = \cos\widehat {DAC}\)
\( \Rightarrow \dfrac{{A{B^2} + A{D^2} - B{D^2}}}{{2AB.AD}}\)\( = \dfrac{{A{C^2} + A{D^2} - C{D^2}}}{{2AC.AD}}\)
\( \Rightarrow \dfrac{{{c^2} + {k^2} - {d^2}}}{{2c.k}} = \dfrac{{{b^2} + {k^2} - {e^2}}}{{2b.k}}\) \( \Rightarrow b\left( {{c^2} + {k^2} - {d^2}} \right) = c\left( {{b^2} + {k^2} - {e^2}} \right)(*)\)
Vì AD là phân giác trong góc A của tam giác ABC nên \(\dfrac{{DB}}{{DC}} = \dfrac{{AB}}{{AC}}\)
\( \Rightarrow DB.AC = DC.AB\) \( \Rightarrow bd = ce\)
Từ (*) ta suy ra
\(\begin{array}{l}
\left( * \right) \Leftrightarrow b{c^2} + b{k^2} - b{d^2} = c{b^2} + c{k^2} - c{e^2}\\
\Leftrightarrow b{c^2} - c{b^2} + b{k^2} - c{k^2} + c{e^2} - b{d^2} = 0\\
\Leftrightarrow bc\left( {c - b} \right) + \left( {b - c} \right){k^2} + bd.e - ce.d = 0\\
\Leftrightarrow - bc\left( {b - c} \right) + \left( {b - c} \right){k^2} + de\left( {b - c} \right) = 0\\
\Leftrightarrow \left( {b - c} \right)\left( { - bc + {k^2} + de} \right) = 0\\
\Leftrightarrow - bc + {k^2} + de = 0\\
\Leftrightarrow {k^2} = bc - de
\end{array}\)(vì \(b \ne c\)) (điều phải chứng minh)
bởi Huong Giang
22/02/2021
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



