OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Cho sáu điểm trong đó không có ba điểm nào thẳng hàng. Gọi \(\Delta \) là một tam giác có ba đỉnh lấy trong sáu điểm đó và \(\Delta '\) là tam giác có ba đỉnh là ba điểm còn lại. Chứng minh rằng với các cánh chọn \(\Delta \) khác nhau, các đường thẳng nối trọng tâm hai tam giác \(\Delta \) và \(\Delta '\) luôn đi qua một điểm cố định.

  bởi het roi 22/02/2021
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi \(A, B, C\) là ba đỉnh của tam giác \(\Delta \) và \(D, E, F\) là ba đỉnh của tam giác \(\Delta '\).

    Gọi \(G\) và \(G’\) lần lượt là trọng tâm của tam giác \(\Delta \) và \(\Delta '\) thì với điểm \(I\) tùy ý, ta có

    \(\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  + \overrightarrow {IE}  + \overrightarrow {IF} \)\( = 3(\overrightarrow {IG}  + \overrightarrow {IG'} ).\)

    Bởi vậy nếu chọn \(I\) là trọng tâm của hệ điểm \(A, B, C, D, E, F,\) tức là trọng tâm của hệ sáu điểm đã cho, thì \(I\) là điểm cố định và \(\overrightarrow {IG}  + \overrightarrow {IG'}  = \overrightarrow 0 \). Vậy các đường thẳng \(GG’\) luôn đi qua điểm \(O\) cố định (\(I\) là trung điểm của đoạn thẳng \(GG’\)).

      bởi Naru to 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF