OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho phương trình \({x^2} + 2x - {m^2} = 0.\) Biết có hai giá trị \({m_1},\,\,{m_2}\) của tham số m để phương trình có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn \(x_1^3 + x_2^3 + 10 = 0.\) Thực hiện tính \({m_1}.{m_2}.\)

A. \(\dfrac{3}{4}\)                                B. \( - \dfrac{1}{3}\)

C. \( - \dfrac{3}{4}\)                             D. \(\dfrac{1}{3}\)

  bởi My Hien 14/07/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Phương trình đã cho có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0\)

    \( \Leftrightarrow 1 + {m^2} > 0\,\,\,\forall m\)

    \( \Rightarrow \) Phương trình đã cho luôn có hai nghiệm phân biệt \({x_1},\,{x_2}\) với mọi m.

    Áp dụng định lý Vi-et ta có:\(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 2\\{x_1}{x_2} =  - {m^2}\end{array} \right..\)

    Theo đề bài ta có: \(x_1^3 + x_2^3 + 10 = 0\)

    \(\begin{array}{l} \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) + 10 = 0\\ \Leftrightarrow {\left( { - 2} \right)^3} - 3\left( { - {m^2}} \right)\left( { - 2} \right) + 10 = 0\\ \Leftrightarrow  - 8 - 6{m^2} + 10 = 0\\ \Leftrightarrow 6{m^2} = 2 \Leftrightarrow {m^2} = \dfrac{1}{3}\\ \Leftrightarrow \left[ \begin{array}{l}{m_1} =  - \dfrac{1}{{\sqrt 3 }}\\{m_2} = \dfrac{1}{{\sqrt 3 }}\end{array} \right. \Rightarrow {m_1}{m_2} =  - \dfrac{1}{{\sqrt 3 }}.\dfrac{1}{{\sqrt 3 }} =  - \dfrac{1}{3}.\end{array}\)

    Đáp án  B.

      bởi hà trang 15/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF