Cho parabol \((P): {y^2} = x\) và hai điểm \(A(1 ; -1), B(9 ; 3)\) nằm trên \((P)\). Gọi \(M\) là điểm thuộc cung \(AB\) của \((P)\) (phần của \((P)\) bị chắn bởi dây \(AB\)). Xác định vị trí của \(M\) trên cung \(AB\) sao cho tam giác \(MAB\) có diện tích lớn nhất.
Câu trả lời (1)
-
Phương trình đường thẳng \(AB: x-2y-3=0.\)
Vì \(M(x ; y)\) nằm trên cung \(AB\) của \((P)\) nên \( - 1 \le y \le 3\).Ta có: \(\begin{array}{l}{S_{MAB}} = \dfrac{1}{2}AB.d(M ; AB)\\ = \dfrac{1}{2}.\sqrt {{{(9 - 1)}^2} + {{(3 + 1)}^2}} . \dfrac{{|x - 2y - 3|}}{{\sqrt {{1^2} + {2^2}} }}\\ = 2.|x - 2y - 3| = 2|{y^2} - 2y - 3|\end{array}\)
Ta có \(f(y) = {y^2} - 2y - 3 \)
\(= {(y - 1)^2} - 4 \ge - 4\).
Suy ra \(f(y)\) nhỏ nhất bằng \(-4\) khi và chỉ khi \(y=1\). Mặt khác, \(f(-1)=f(3)=0\). Do đó trên đoạn \([-1 ; 3],\) hàm số \(|{y^2} - 2y - 3|\) lớn nhất bằng \(4\) khi và chỉ khi \(y=1\). Vậy \(S_MAB\) lớn nhất bằng \(8\) khi và chỉ khi \(M=(1 ; 1).\)
bởi Minh Thắng 23/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời