Cho hai đường tròn \(\left( {{C_1}} \right)\): \({x^2} + {y^2} - 6x + 5 = 0\) và \(\left( {{C_2}} \right)\): \({x^2} + {y^2} - 12x - 6y + 44 = 0\). Lập phương trình tiếp tuyến chung của \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\).
Câu trả lời (1)
-
Xét đường thẳng \(\Delta \) có phương trình: \(y = kx + m\) hay \(kx - y + m = 0\).
Ta có: \(\Delta \) tiếp xúc với \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) khi và chỉ khi \(\left\{ \begin{array}{l}d({I_1},\Delta ) = {R_1}\\d({I_2},\Delta ) = {R_2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{\left| {3k + m} \right|}}{{\sqrt {{k^2} + 1} }} = 2\,\,(1)\\\dfrac{{\left| {6k - 3 + m} \right|}}{{\sqrt {{k^2} + 1} }} = 1\,\,(2)\end{array} \right.\)
Từ (1) và (2) suy ra \(\left| {3k + m} \right| = 2\left| {6k - 3 + m} \right|\).
Trường hợp 1: \(3k + m = 2(6k - 3 + m)\)\( \Leftrightarrow m = 6 - 9k\) (3)
Thay vào (2) ta được \(\left| {6k - 3 + 6 - 9k} \right| = \sqrt {{k^2} + 1} \)\( \Leftrightarrow \left| {3 - 3k} \right| = \sqrt {{k^2} + 1} \)
\( \Leftrightarrow 9 - 18k + 9{k^2} = {k^2} + 1\)\( \Leftrightarrow 8{k^2} - 18k + 8 = 0\)
\( \Leftrightarrow 4{k^2} - 9k + 4 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}{k_1} = \dfrac{{9 + \sqrt {17} }}{8}\\{k_2} = \dfrac{{9 - \sqrt {17} }}{8}\end{array} \right.\)
Thay giá trị của k vào (3) ta tính được \(\left[ \begin{array}{l}{k_1} = 6 - 9{k_1}\\{k_2} = 6 - 9{k_2}\end{array} \right.\)
Vậy ta được hai tiếp tuyến \({\Delta _1}:y = {k_1}x + 6 - 9{k_1};\)\({\Delta _2}:y = {k_2}x + 6 - 9{k_2}.\)
Trường hợp 2: \(3k + m = - 2(6k - 3 + m)\)\( \Leftrightarrow 3m = 6 - 15k\)\( \Leftrightarrow m = 2 - 5k\) (4)
Thay vào (2) ta được \(\left| {6k - 3 + 2 - 5k} \right| = \sqrt {{k^2} + 1} \)\( \Leftrightarrow \left| {k - 1} \right| = \sqrt {{k^2} + 1} \)
\( \Leftrightarrow {(k - 1)^2} = {k^2} + 1\)\( \Leftrightarrow {k^2} - 2k + 1 = {k^2} + 1\)\( \Leftrightarrow k = 0.\)
Thay giá trị của \(k\) vào (4) ta được \(m = 2\).
Vậy ta được tiếp tuyến \({\Delta _3}:y = 2.\)
Xét đường thẳng \({\Delta _4}\) vuông góc với \(Ox\) tại \({x_0}\):\({\Delta _4}:x - {x_0} = 0.\)
\({\Delta _4}\) tiếp xúc với \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) khi và chỉ khi
\(\left\{ \begin{array}{l}d({I_1},{\Delta _4}) = {R_1}\\d({I_2},{\Delta _4}) = {R_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left| {3 - {x_0}} \right| = 2\\\left| {6 - {x_0}} \right| = 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}{x_0} = 1\\{x_0} = 5\end{array} \right.\\\left[ \begin{array}{l}{x_0} = 5\\{x_0} = 7\end{array} \right.\end{array} \right. \Leftrightarrow {x_0} = 5\)
Vậy ta được tiếp tuyến \({\Delta _4}:x - 5 = 0\).
Vậy hai đường tròn \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) có bốn tiếp tuyến chung \({\Delta _1}\), \({\Delta _2}\), \({\Delta _3}\)và \({\Delta _4}\).
bởi Nguyễn Hồng Tiến 22/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời