OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hai điểm cố định \(A ,B\) có khoảng cách bằng \(a.\) Tìm tập hợp các điểm \(M\) sao cho \(\overrightarrow {MA} .\overrightarrow {MB} = k\).

  bởi Phạm Khánh Ngọc 22/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi \(O\) là trung điểm cả \(AB\) thì \(\overrightarrow {OA}  =  - \overrightarrow {OB} \).

    Với mọi điểm \(M\) ta có

    \(\begin{array}{l}\overrightarrow {MA} .\overrightarrow {MB} \\ = (\overrightarrow {MO}  + \overrightarrow {OA} ).(\overrightarrow {MO}  + \overrightarrow {OB} )\\ = (\overrightarrow {MO}  - \overrightarrow {OB} ).(\overrightarrow {MO}  + \overrightarrow {OB} )\\= M{O^2} - O{B^2} \\= M{O^2} - \dfrac{{{a^2}}}{4}.\end{array}\)

    Từ đó

    \(\overrightarrow {MA} .\overrightarrow {MB}  = k \)

    \(\Leftrightarrow M{O^2} - \dfrac{{{a^2}}}{4} = k\)

    \(\Leftrightarrow   M{O^2} =  \dfrac{{{a^2}}}{4} + k.  (*)\)

    Ta có \(O\) cố định, \(\dfrac{{{a^2}}}{4} + k\) là số không đổi nên:

    - Nếu \(k <  - \dfrac{{{a^2}}}{4}\)thì tập các điểm \(M\) là tập các điểm rỗng.

    - Nếu \(k =  - \dfrac{{{a^2}}}{4}\)thì tập các điểm \(M\) chỉ gồm một điểm \(O\).

    - Nếu \(k >  - \dfrac{{{a^2}}}{4}\) thì tập các điểm \(M\) là đường tròn tâm \(O\) bán kính \(R = \dfrac{1}{2}\sqrt {{a^2} + 4k} .\)

      bởi Mai Đào 23/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF