OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho đường tròn \(\left( C \right)\): \({x^2} + {y^2} - 6x + 2y + 6 = 0\) và điểm \(A(1;3)\). Lập phương trình tiếp tuyến với \(\left( C \right)\) xuất phát từ điểm \(A\).

  bởi Tuyet Anh 22/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi \(\Delta :ax + by + c = 0\).

    \(A \in \Delta  \Leftrightarrow a + 3b + c = 0\) \( \Leftrightarrow c =  - a - 3b\) hay \(\Delta :ax + by - a - 3b = 0\)

    \(\Delta \) là tiếp tuyến với \(\left( C \right)\) \( \Leftrightarrow d\left( {I,\Delta } \right) = R\) \( \Leftrightarrow \dfrac{{\left| {3a - b - a - 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 2\)

    \( \Leftrightarrow \left| {2a - 4b} \right| = 2\sqrt {{a^2} + {b^2}} \) \( \Leftrightarrow \left| {a - 2b} \right| = \sqrt {{a^2} + {b^2}} \) \( \Leftrightarrow {\left( {a - 2b} \right)^2} = {a^2} + {b^2}\) \( \Leftrightarrow {a^2} - 4ab + 4{b^2} = {a^2} + {b^2}\) \( \Leftrightarrow 3{b^2} - 4ab = 0\) \( \Leftrightarrow b\left( {3b - 4a} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}b = 0\\4a = 3b\end{array} \right.\)

    Với \(b = 0\), chọn \(a = 1\) ta được \({\Delta _1}:x - 1 = 0\).

    Với \(4a = 3b\), chọn \(a = 3,b = 4\) ta được \({\Delta _2}:3x + 4y - 15 = 0\).

    Vậy \({\Delta _1}:x - 1 = 0\), \({\Delta _2}:3x + 4y - 15 = 0\).

      bởi Nguyễn Trà Long 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF