OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho điểm \(M\) cố định trên đường tròn \((O ; R)\) và hai điểm \(N, P\) chạy trên đường tròn đó sao cho \(\widehat {NMP} = {30^0}\). Tìm quỹ tích trung điểm \(I\) của \(NP.\)

  bởi Nhật Nam 23/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có \(NP = 2R\sin {30^0} = R,\)

    \(  O{I^2} = O{N^2} - N{I^2} \)

    \(= {R^2} - \dfrac{{{R^2}}}{4} = \dfrac{{3{R^2}}}{4}\).

    Suy ra \(OI = \dfrac{{R\sqrt 3 }}{2}\) không đổi, do đó \(I\) thuộc đường tròn tâm \(O\) bán kính bằng \(\dfrac{{R\sqrt 3 }}{2}\).

    Đảo lại, với mỗi điểm \(I\) trên đường tròn đó ta kẻ dây cung \(NP\) của \((O)\) vuông góc với \(OI\) thì \(NP=2NI=R.\)

    Ta có \(\sin \widehat {NMP} = \dfrac{R}{{2R}} = \dfrac{1}{2}\). Góc \(NMP\) có thể bằng \(30^0\) hoặc bằng \(150^0\). Dễ thấy \(\widehat {NMP} = {30^0}\) khi và chỉ khi \(O, M\) ở về một phía của \(NP\) hay \(I\) nằm trên cung lớn \(\stackrel\frown {EF}\) của đường tròn \(\left( {O ; \dfrac{{R\sqrt 3 }}{2}} \right)\) (\(E, F\) là hai tiếp điểm của hai tiếp tuyến kẻ từ M tới đường tròn \(\left( {O ; \dfrac{{R\sqrt 3 }}{2}} \right)\) ).

    Vậy quỹ tích của \(I\) là cung lớn \(\stackrel\frown {EF}\).

      bởi Hồng Hạnh 23/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF