Cho điểm \(M(a; b)\) với \(a > 0, b > 0\). Viết phương trình đường thẳng qua \(M\) và cắt các tia \(Ox, Oy\) lần lượt tại \(A, B\) sao cho tam giác \(OAB\) có diện tích nhỏ nhất.
Câu trả lời (1)
-
Gọi \(A(x_0 ; 0), B(0 ; y_0).\)
Khi đó, \(x_0 > 0, y_0 > 0\). Phương trình đường thẳng AB là \( \dfrac{x}{{{x_0}}} + \dfrac{y}{{{y_0}}} = 1\).
\(\begin{array}{l}M \in AB \Rightarrow \dfrac{a}{{{x_0}}} + \dfrac{b}{{{y_0}}} = 1.\\{S_{OAB}} = \dfrac{1}{2}.OA.OB = \dfrac{1}{2}{x_0}.{y_0}.\end{array}\)
Ta có
\(1 = \dfrac{a}{{{x_0}}} + \dfrac{b}{{{y_0}}} \ge 2\sqrt { \dfrac{{ab}}{{{x_0}{y_0}}}}\)
\(\Rightarrow {x_0}{y_0} \ge 4ab\).
Do đó \({S_{OAB}} = \dfrac{1}{2}{x_0}{y_0} \ge \dfrac{1}{2}.4ab = 2ab\).
Dấu “=” xảy ra khi và chỉ khi \( \dfrac{a}{{{x_0}}} = \dfrac{b}{{{y_0}}} = \dfrac{1}{2}\) hay \(\left\{ \begin{array}{l}{x_0} = 2a\\{y_0} = 2b\end{array} \right.\).
Vậy diện tích tam giác \(OAB\) nhỏ nhất bằng 2ab khi \(\left\{ \begin{array}{l}{x_0} = 2a\\{y_0} = 2b\end{array} \right.\). Phương trình đường thẳng cần tìm là \( \dfrac{x}{{2a}} + \dfrac{y}{{2b}} = 1\).
bởi Lê Minh 23/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời