OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho biết có tất cả bao nhiêu số nguyên m để phương trình \(4\sqrt {x - 2} + {m^2}\sqrt {x + 2} = 5\sqrt[4]{{{x^2} - 4}}\) có nghiệm.

A. 2                      B. 3

C. 1                      D. 4

  bởi Anh Tuyet 14/07/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • ĐK: \(\left\{ \begin{array}{l}x - 2 \ge 0\\x + 2 \ge 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\x \ge  - 2\end{array} \right.\) \( \Leftrightarrow x \ge 2\) \( \Rightarrow D = \left[ {2; + \infty } \right)\).

    \(\begin{array}{l}\,\,\,\,\,4\sqrt {x - 2}  + {m^2}\sqrt {x + 2}  = 5\sqrt[4]{{{x^2} - 4}}\\ \Leftrightarrow 4\sqrt {x - 2}  + {m^2}\sqrt {x + 2}  = 5\sqrt[4]{{x - 2}}\sqrt[4]{{x + 2}}\end{array}\)

    TH1: \(x = 2\), phương trình trở thành: \(2{m^2} = 0 \Leftrightarrow m = 0\).

    Thử lại với \(m = 0\) ta có:

    \(\begin{array}{l}4\sqrt {x - 2}  = 5\sqrt[4]{{x - 2}}\sqrt[4]{{x + 2}}\\ \Leftrightarrow \sqrt[4]{{x - 2}}\left( {4\sqrt[4]{{x - 2}} - 5\sqrt[4]{{x + 2}}} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\,\,\left( {tm} \right)\\4\sqrt[4]{{x - 2}} - 5\sqrt[4]{{x + 2}} = 0\end{array} \right.\end{array}\)

    Do đó phương trình có nghiệm \(x = 2\), suy ra \(m = 0\) thỏa mãn.

    TH2: \(x \ne 2\), chia cả 2 vế của phương trình cho \(\sqrt[4]{{x - 2}}\sqrt[4]{{x + 2}}\) ta được: \(4\dfrac{{\sqrt[4]{{x - 2}}}}{{\sqrt[4]{{x + 2}}}} + {m^2}\dfrac{{\sqrt[4]{{x + 2}}}}{{\sqrt[4]{{x - 2}}}} = 5\)

    Đặt \(\dfrac{{\sqrt[4]{{x - 2}}}}{{\sqrt[4]{{x + 2}}}} = t\,\,\left( {0 < t < 1} \right)\), phương trình trở thành \(4t + \dfrac{{{m^2}}}{t} = 5\)\( \Leftrightarrow 4{t^2} - 5t + {m^2} = 0\) (*)

    Phương trình (*) có nghiệm \( \Leftrightarrow \Delta  = 25 - 16{m^2} \ge 0 \Leftrightarrow  - \dfrac{5}{4} \le m \le \dfrac{5}{4}\).

    Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1} \right\}\).

    Thử lại:

    Với \(m =  \pm 1\) ta có: \(4{t^2} - 4t + 1 = 0 \Leftrightarrow t = \dfrac{1}{2}\).

    \(\begin{array}{l} \Rightarrow \dfrac{{\sqrt[4]{{x - 2}}}}{{\sqrt[4]{{x + 2}}}} = \dfrac{1}{2}\\ \Leftrightarrow 2\sqrt[4]{{x - 2}} = \sqrt[4]{{x + 2}}\\ \Leftrightarrow 16\left( {x - 2} \right) = x + 2\\ \Leftrightarrow 16x - 32 = x + 2\\ \Leftrightarrow 15x = 34\\ \Leftrightarrow x = \dfrac{{34}}{{15}}\,\,\left( {tm} \right)\end{array}\)

    \( \Rightarrow m =  \pm 1\) thỏa mãn.

    Vậy có 3 giá trị nguyên của m thỏa mãn yêu cầu bài toán là \(m \in \left\{ { - 1;0;1} \right\}\).

    Đáp án B.

      bởi Tieu Giao 15/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF