Cho biết có tất cả bao nhiêu số nguyên m để phương trình \(4\sqrt {x - 2} + {m^2}\sqrt {x + 2} = 5\sqrt[4]{{{x^2} - 4}}\) có nghiệm.
A. 2 B. 3
C. 1 D. 4
Câu trả lời (1)
-
ĐK: \(\left\{ \begin{array}{l}x - 2 \ge 0\\x + 2 \ge 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\x \ge - 2\end{array} \right.\) \( \Leftrightarrow x \ge 2\) \( \Rightarrow D = \left[ {2; + \infty } \right)\).
\(\begin{array}{l}\,\,\,\,\,4\sqrt {x - 2} + {m^2}\sqrt {x + 2} = 5\sqrt[4]{{{x^2} - 4}}\\ \Leftrightarrow 4\sqrt {x - 2} + {m^2}\sqrt {x + 2} = 5\sqrt[4]{{x - 2}}\sqrt[4]{{x + 2}}\end{array}\)
TH1: \(x = 2\), phương trình trở thành: \(2{m^2} = 0 \Leftrightarrow m = 0\).
Thử lại với \(m = 0\) ta có:
\(\begin{array}{l}4\sqrt {x - 2} = 5\sqrt[4]{{x - 2}}\sqrt[4]{{x + 2}}\\ \Leftrightarrow \sqrt[4]{{x - 2}}\left( {4\sqrt[4]{{x - 2}} - 5\sqrt[4]{{x + 2}}} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\,\,\left( {tm} \right)\\4\sqrt[4]{{x - 2}} - 5\sqrt[4]{{x + 2}} = 0\end{array} \right.\end{array}\)
Do đó phương trình có nghiệm \(x = 2\), suy ra \(m = 0\) thỏa mãn.
TH2: \(x \ne 2\), chia cả 2 vế của phương trình cho \(\sqrt[4]{{x - 2}}\sqrt[4]{{x + 2}}\) ta được: \(4\dfrac{{\sqrt[4]{{x - 2}}}}{{\sqrt[4]{{x + 2}}}} + {m^2}\dfrac{{\sqrt[4]{{x + 2}}}}{{\sqrt[4]{{x - 2}}}} = 5\)
Đặt \(\dfrac{{\sqrt[4]{{x - 2}}}}{{\sqrt[4]{{x + 2}}}} = t\,\,\left( {0 < t < 1} \right)\), phương trình trở thành \(4t + \dfrac{{{m^2}}}{t} = 5\)\( \Leftrightarrow 4{t^2} - 5t + {m^2} = 0\) (*)
Phương trình (*) có nghiệm \( \Leftrightarrow \Delta = 25 - 16{m^2} \ge 0 \Leftrightarrow - \dfrac{5}{4} \le m \le \dfrac{5}{4}\).
Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1} \right\}\).
Thử lại:
Với \(m = \pm 1\) ta có: \(4{t^2} - 4t + 1 = 0 \Leftrightarrow t = \dfrac{1}{2}\).
\(\begin{array}{l} \Rightarrow \dfrac{{\sqrt[4]{{x - 2}}}}{{\sqrt[4]{{x + 2}}}} = \dfrac{1}{2}\\ \Leftrightarrow 2\sqrt[4]{{x - 2}} = \sqrt[4]{{x + 2}}\\ \Leftrightarrow 16\left( {x - 2} \right) = x + 2\\ \Leftrightarrow 16x - 32 = x + 2\\ \Leftrightarrow 15x = 34\\ \Leftrightarrow x = \dfrac{{34}}{{15}}\,\,\left( {tm} \right)\end{array}\)
\( \Rightarrow m = \pm 1\) thỏa mãn.
Vậy có 3 giá trị nguyên của m thỏa mãn yêu cầu bài toán là \(m \in \left\{ { - 1;0;1} \right\}\).
Đáp án B.
bởi Tieu Giao 15/07/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời