OPTADS360
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Cho ba điểm phân biệt \(A, B, C.\) Chứng tỏ rằng \(\overrightarrow {IA} = t\overrightarrow {IB} + (1 - t)\overrightarrow {IC} \) là điều kiện cần và đủ để ba điểm \(A, B, C\) thẳng hàng.

  bởi Lê Văn Duyệt 21/02/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta có:

    \(\begin{array}{l}
    \overrightarrow {IA} = t\overrightarrow {IB} + \left( {1 - t} \right)\overrightarrow {IC} \\
    \Leftrightarrow \overrightarrow {IA} = t\left( {\overrightarrow {IA} + \overrightarrow {AB} } \right) + \left( {1 - t} \right)\left( {\overrightarrow {IA} + \overrightarrow {AC} } \right)\\
    \Leftrightarrow \overrightarrow {IA} = t\overrightarrow {IA} + t\overrightarrow {AB} + \left( {1 - t} \right)\overrightarrow {IA} + \left( {1 - t} \right)\overrightarrow {AC} \\
    \Leftrightarrow \overrightarrow {IA} = \left[ {t\overrightarrow {IA} + \left( {1 - t} \right)\overrightarrow {IA} } \right] + t\overrightarrow {AB} + \left( {1 - t} \right)\overrightarrow {AC} \\
    \Leftrightarrow \overrightarrow {IA} = \left( {t + 1 - t} \right)\overrightarrow {IA} + t\overrightarrow {AB} + \left( {1 - t} \right)\overrightarrow {AC} \\
    \Leftrightarrow \overrightarrow {IA} = \overrightarrow {IA} + t\overrightarrow {AB} + \left( {1 - t} \right)\overrightarrow {AC} \\
    \Leftrightarrow \overrightarrow 0 = t\overrightarrow {AB} + \left( {1 - t} \right)\overrightarrow {AC} \\
    \Leftrightarrow t\overrightarrow {AB} + \left( {1 - t} \right)\overrightarrow {AC} = \overrightarrow 0
    \end{array}\)

    \( \Leftrightarrow \overrightarrow {AB}  = \frac{{t - 1}}{t}\overrightarrow {AC} \) (do \(t\ne 0\))

    \(\Leftrightarrow \) ba điểm \(A, B, C\) thẳng hàng.

      bởi Dang Thi 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF