OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho ba điểm \(A(2 ; 0), B(4 ; 1), C(1 ; 2).\) Tìm tọa độ tâm \(I\) của đường tròn nội tiếp tam giác \(ABC.\)

  bởi Van Tho 22/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(\overrightarrow {BC}  = ( - 3 ; 1)\). Phương trình đường thẳng \(BC\) là \(x+3y-7=0.\)

    Phương trình các đường phân giác trong và ngoài của góc \(B\) là

    \( \dfrac{{x - 2y - 2}}{{\sqrt {{1^2} + {2^2}} }} =  \pm  \dfrac{{x + 3y - 7}}{{\sqrt {{1^2} + {3^2}} }}\)

    \(\Leftrightarrow     \left[ \begin{array}{l}(\sqrt 2  - 1)x - (2\sqrt 2  + 3)y + 7 - 2\sqrt 2  = 0\,\,\,\,\,\,\,\,(3)\\(\sqrt 2  + 1)x + (3 - 2\sqrt 2 )y - 7 - 2\sqrt 2  = 0 \,\,\,\,\,\,\,\,(4)\end{array} \right.\)

    Thay lần lượt tọa độ của \(A\) và \(C\) vào vế trái của (3) ta được:

    \((\sqrt 2  - 1).2 + 7 - 2\sqrt 2  = 5 ;\) \(     (\sqrt 2  - 1).1 - (2\sqrt 2  + 3).2 + 7 - 2\sqrt 2  =  - 5\sqrt 2. \)

    Suy ra phương trình đường phân giác trong của góc \(B\) là

    \((\sqrt 2  - 1)x - (2\sqrt 2  + 3)y + 7 - 2\sqrt 2  = 0.\)

    Tâm \(I\) của đường tròn nội tiếp tam giác là giao điểm của các đường phân giác trong. Tọa độ của \(I\) là nghiệm của hệ

    \(\left\{ \begin{array}{l}3x - y - 6 = 0\\(\sqrt 2  - 1)x - (2\sqrt 2  + 3)y + 7 - 2\sqrt 2  = 0\end{array} \right. \)

    \(  \Leftrightarrow   \left\{ \begin{array}{l}x =  \dfrac{{5 + 2\sqrt 2 }}{{2 + \sqrt 2 }}\\y =  \dfrac{3}{{2 + \sqrt 2 }}\end{array} \right.\).

    Vậy \(I = \left( { \dfrac{{5 + 2\sqrt 2 }}{{2 + \sqrt 2 }} ;  \dfrac{3}{{2 + \sqrt 2 }}} \right)\).

      bởi bala bala 23/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF