OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho a, b, c là số đo ba cạnh và A, B, C là số đo (độ) ba góc tương ứng của một tam giác. Chứng minh rằng: \(\left( {{\rm{a}} - b} \right)\left( {{\rm{A}} - B} \right) \ge 0\) ; khi nào đẳng thức xảy ra?

  bởi Nguyễn Thị Thanh 22/02/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Áp dụng mối liên hệ giữa cạnh và góc trong tam giác, ta có :

    Nếu \(a ≥ b\) thì \(A ≥ B\) ;

    Nếu \(a ≤ b\) thì \(A ≤ B\) ;

    Vì vậy luôn có \(\left( {{\rm{a}} - b} \right)\left( {{\rm{A}} - B} \right) \ge 0,\) đẳng thức xảy ra khi và chỉ khi a = b (A = B), tức là tam giác ABC cân tại C.

      bởi bala bala 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF