Cho a, b, c, d là bốn số dương. Chứng minh rằng: \(1 < \dfrac{a}{{a + b + c}} + \dfrac{b}{{b + c + {\rm{d}}}} + \dfrac{c}{{c + {\rm{d}} + a}} + \dfrac{{\rm{d}}}{{d + a + b}} < 2.\)
Câu trả lời (1)
-
Do a, b, c, d là các số dương nên
\(\begin{array}{l}\dfrac{a}{{a + b + c}} > \dfrac{a}{{a + b + c + {\rm{d}}}}\\\dfrac{b}{{b + c + {\rm{d}}}} > \dfrac{b}{{a + b + c + {\rm{d}}}}\\\dfrac{c}{{c + {\rm{d}} + a}} > \dfrac{c}{{a + b + c + {\rm{d}}}}\\\dfrac{{\rm{d}}}{{d + a + b}} > \dfrac{{\rm{d}}}{{a + b + c + {\rm{d}}}}\end{array}\)
Cộng vế với cế của các bất đẳng thức trên, ta suy ra
\(\dfrac{a}{{a + b + c}} + \dfrac{b}{{b + c + {\rm{d}}}} + \dfrac{c}{{c + {\rm{d}} + a}} + \dfrac{{\rm{d}}}{{d + a + b}} > 1\)
Lại có \(\dfrac{a}{{a + b + c}} < \dfrac{a}{{a + c}};\dfrac{c}{{c + {\rm{d}} + a}} < \dfrac{c}{{a + c}}\)
Nên \(\dfrac{a}{{a + b + c}} + \dfrac{c}{{c + {\rm{d}} + a}} < 1.\)
Tương tự \(\dfrac{b}{{b + c + {\rm{d}}}} + \dfrac{{\rm{d}}}{{d + a + b}} < 1.\) Từ đó suy ra
\(\dfrac{a}{{a + b + c}} + \dfrac{b}{{b + c + {\rm{d}}}} + \dfrac{c}{{c + {\rm{d}} + a}} + \dfrac{{\rm{d}}}{{d + a + b}} < 2\)
bởi Thùy Trang
22/02/2021
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



