OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho \(a, b, c > 0\). Chứng minh rằng: \({{a + b} \over c} + {{b + c} \over a} + {{c + a} \over b} \ge 6.\)

  bởi Phạm Phú Lộc Nữ 19/02/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Vế trái bất đẳng thức có thể viết là:

    \(\begin{array}{l}
    \dfrac{{a + b}}{c} + \dfrac{{b + c}}{a} + \dfrac{{c + a}}{b} \\= \left( {\dfrac{a}{c} + \dfrac{b}{c}} \right) + \left( {\dfrac{b}{a} + \dfrac{c}{a}} \right) + \left( {\dfrac{c}{b} + \dfrac{a}{b}} \right)\\
    = \left( {\dfrac{a}{c} + \dfrac{c}{a}} \right) + \left( {\dfrac{b}{a} + \dfrac{a}{b}} \right) + \left( {\dfrac{c}{b} + \dfrac{b}{c}} \right).
    \end{array}\)

    Áp dụng bđt Cô – si cho hai số dương

    \(\dfrac{a}{c}\) và \(\dfrac{c}{a}\) ta có: \(\dfrac{a}{c} + \dfrac{c}{a} \ge 2\sqrt {\dfrac{a}{c}.\dfrac{c}{a}}  = 2.\sqrt 1  = 2\)

    \(\dfrac{b}{a}\) và \(\dfrac{a}{b}\) ta có: \(\dfrac{b}{a} + \dfrac{a}{b} \ge 2\sqrt {\dfrac{b}{a}.\dfrac{a}{b}}  = 2.\sqrt 1  = 2\)

    \(\dfrac{c}{b}\) và \(\dfrac{b}{c}\) ta có: \(\dfrac{c}{b} + \dfrac{b}{c} \ge 2\sqrt {\dfrac{c}{b}.\dfrac{b}{c}}  = 2.\sqrt 1  = 2\)

    Cộng vế với vế các bđt ta được:

    \(\begin{array}{l}\left( {\dfrac{a}{c} + \dfrac{c}{a}} \right) + \left( {\dfrac{b}{a} + \dfrac{a}{b}} \right) + \left( {\dfrac{c}{b} + \dfrac{b}{c}} \right)\\ \ge 2 + 2 + 2 = 6\\ \Rightarrow dpcm\end{array}\)

    Dấu “=” xảy ra khi \(\left\{ \begin{array}{l}\dfrac{a}{c} = \dfrac{c}{a}\\\dfrac{b}{a} = \dfrac{a}{b}\\\dfrac{c}{b} = \dfrac{b}{c}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a^2} = {c^2}\\{b^2} = {a^2}\\{c^2} = {b^2}\end{array} \right.\) \( \Leftrightarrow {a^2} = {b^2} = {c^2}\) \( \Leftrightarrow a = b = c\) (do \(a,b,c > 0\))

    Vậy \({{a + b} \over c} + {{b + c} \over a} + {{c + a} \over b} \ge 6.\)

      bởi Duy Quang 19/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF