Biện luận theo a số nghiệm pt ax^3-(a+2)x^2+3x-1=0
Biện luận theo a số nghiệm và viết biểu thức nghiệm của phương trình sau :
\(ax^3-\left(a+2\right)x^2+3x-1=0\)
Câu trả lời (1)
-
\(ax^3-\left(a+2\right)x^2+3x-1=0\) (1)
\(ax^3-\left(a+2\right)x^2+3x-1=0\Leftrightarrow\left(x-1\right)\left(ax^2-2x+1\right)=0\)
\(\Leftrightarrow\begin{cases}x-1=0\\ax^2-2x+1=0\end{cases}\left(2\right);\left(3\right)\)
Nhận xét rằng phương trình \(x-1=0\) (2) luôn có nghiệm x = 1
Phương trình \(ax^2-2x+1=0\) (3) có nghiệm x=1 khi và chỉ khi a=1.
Khi đó x=1 là nghiệm kép của (3)
- Nếu a=0 thì (3) có nghiệm \(x=\frac{1}{2}\)
- Nếu \(a\ne0\) thì (3) là phương trình bậc hai có \(\Delta'=1-a\)
+ Nếu \(\Delta'<0\)
hay a>1 thì ( 3) vô nghiệm
+ Nếu a<1, \(a\ne0\) thì \(\Delta'>0\)
nên phương trình (3) có hai nghiệm \(x_{1;2}=\frac{1\pm\sqrt{1-a}}{a}\)
Theo nhận xét trên thì hai nghiệm này cùng khác 1. Ta có kết luận
- Nếu \(a\ge1\) thì (1) có một nghiệm x=1 ( khi a=1 thì x = 1 là nghiệm bội ba)
- Nếu a = 0 thì (1) có hai nghiệm phân biệt \(x=1;x=\frac{1}{2}\)
- Nếu a < 1, \(a\ne0\) thì (1) có ba nghiệm phân biệt
x = 1, \(x=\frac{1-\sqrt{1-a}}{a};x=\frac{1=\sqrt{1-a}}{a}\)
bởi Thuong Mai 07/11/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời