OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài 62 trang 124 sách bài tập Đại số 10

Bài 62 (SBT trang 124)

Chứng minh rằng :

                    \(a+b+c\le\dfrac{1}{2}\left(a^2b+b^2c+c^2a+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

với a, b, c là những số dương tùy ý

  bởi Anh Trần 07/11/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Áp dụng bất đẳng thức Cauchy - Schwarz

    \(\Rightarrow\left\{{}\begin{matrix}a^2b+\dfrac{1}{b}\ge2\sqrt{\dfrac{a^2b}{b}}=2a\\b^2c+\dfrac{1}{c}\ge2\sqrt{\dfrac{b^2c}{c}}=2b\\c^2a+\dfrac{1}{a}\ge2\sqrt{\dfrac{c^2a}{a}}=2c\end{matrix}\right.\)

    \(\Rightarrow a^2b+b^2c+c^2a+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge2\left(a+b+c\right)\)

    \(\Rightarrow\dfrac{1}{2}\left(a^2b+b^2c+c^2a+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge a+b+c\) ( đpcm )

    Dấu " = " xảy ra khi \(a=b=c=1\)

      bởi Đinh quang Khải 07/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF