OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài 50 trang 123 sách bài tập Đại số 10

Bài 50 (SBT trang 123)

Giải các bất phương trình, hệ bất phương trình (ẩn m) sau :

a) \(\left\{{}\begin{matrix}2m-1>0\\m^2-\left(m-2\right)\left(2m-1\right)< 0\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}m^2-m-2< 0\\\left(2m-1\right)^2-4\left(m^2-m-2\right)\le0\end{matrix}\right.\)

  bởi My Le 12/10/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • a)\(\left\{{}\begin{matrix}2m-1>0\Rightarrow m>\dfrac{1}{2}\left(1\right)\\m^2-\left(m-2\right)\left(2m-1\right)< 0\left(2\right)\end{matrix}\right.\)

    \(\left(2\right)\Leftrightarrow m^2-\left(2m^2-m-4m+2\right)=-m^2+5m-2< 0\)

    \(m^2-5m+2>0\Rightarrow\left[{}\begin{matrix}m< \dfrac{5-\sqrt{17}}{2}< \dfrac{1}{2}\\m>\dfrac{5+\sqrt{17}}{2}\end{matrix}\right.\)

    Nghiệm hệ là

    \(m>\dfrac{5+\sqrt{17}}{2}\)

    b)\(\left\{{}\begin{matrix}m^2-m-2< 0\left(1\right)\\\left(2m-1\right)^2-4\left(m^2-m-2\right)\le0\left(2\right)\end{matrix}\right.\)

     

    \(\left(2\right)\left(2m-1\right)^2-4\left(m^2-m-2\right)=9< 0,\forall m\)
    Suy ra (2) vô nghiệm .

    Kết luận hệ vô nghiệm.

     

     

      bởi nguyen ngan 12/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF