OPTADS360
ATNETWORK
ADS_ZUNIA
YOMEDIA
Banner-Video
IN_IMAGE

Bài 2.25 trang 92 sách bài tập Hình học 10

Bài 2.25 (SBT trang 92)

Trong mặt phẳng Oxy cho 4 điểm \(A\left(-1;1\right);B\left(0;2\right);C\left(3;1\right);D\left(0;-2\right)\). Chứng minh rằng tứ giác ABCD là hình thang cân ?

  bởi can chu 07/11/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Muốn chứng minh tứ giác ABCD là hình thang cân ta cần chứng minh hai điều:
    - AB//CD.
    - AD = BC.
    \(\overrightarrow{AB}\left(1;1\right);\overrightarrow{DC}\left(-3;-3\right)\)
    Dễ thấy \(\overrightarrow{DC}=-3\overrightarrow{AB}\) nên hai véc tơ \(\overrightarrow{DC}\)\(\overrightarrow{AB}\) cùng phương.
    Suy ra DC//AB. (1)
    \(AD=\sqrt{\left(0-1\right)^2+\left(-2-1\right)^2}=\sqrt{10}\).
    \(BC=\sqrt{\left(3-0\right)^2+\left(1-2\right)^2}=\sqrt{10}\).
    Vậy AD = BC. (2)
    Từ (1) và (2) suy ra tứ giác ABCD là hình thang cân.

      bởi Hồ Ngọc Chiến 07/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF