OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài 1.26 trang 33 sách bài tập Hình hoc 10

Bài 1.26 (SBT trang 33)

Cho lục giác đều ABCDEF tâm O có cạnh a

a) Phân tích vectơ \(\overrightarrow{AD}\) theo hai vectơ \(\overrightarrow{AB}\) và \(\overrightarrow{AF}\) 

b) Tính độ dài của vectơ \(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}\) theo a

  bởi Nguyễn Tiểu Ly 02/10/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • TenAnh1 TenAnh1 A = (-4.3, -5.94) A = (-4.3, -5.94) A = (-4.3, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) D = (10.84, -5.94) D = (10.84, -5.94) D = (10.84, -5.94)
    a)
    \(\overrightarrow{AO}=\overrightarrow{AB}+\overrightarrow{BO}=\overrightarrow{AB}+\overrightarrow{AF}\).
    Vậy \(\overrightarrow{AD}=2\overrightarrow{AO}=2\left(\overrightarrow{AB}+\overrightarrow{AF}\right)\).
    b)
    \(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)=\dfrac{1}{2}\overrightarrow{AC}\).
    Vì vậy: \(\left|\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}\right|=\left|\dfrac{1}{2}\overrightarrow{AC}\right|=\dfrac{1}{2}AC\).
    A B C a H
    Do tam giác ABC cân tại B nên BH là đường cao, đường trung tuyến, đường phân giác ứng với đỉnh B của tam giác ABC.
    Áp dụng hệ thức lượng trong tam giác vuông ta có:
    \(AH=AB.sin60^o=\dfrac{a\sqrt{3}}{2}\).
    \(AC=2BH=2.\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\).
    Vì vậy: \(\left|\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}\right|=\left|\dfrac{1}{2}\overrightarrow{AC}\right|=\dfrac{1}{2}AC\)\(=a\sqrt{3}\).

      bởi Thương Kiên 02/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF