OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

mn người ơi, giải giúp em vs, bài này khó quá!

Giải hệ phương trình: \(\left\{\begin{matrix} xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{y}\\ 3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7 \end{matrix}\right.\)

  bởi Việt Long 07/02/2017
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Điều kiện: \(x\geq 0,1\leq y\leq 6,2x+3y-7\geq 0\) (*)
    Nhận thấy \(\left\{\begin{matrix} x=0\\ y=1 \end{matrix}\right.\) không là nghiệm của hệ phương trình \(\Rightarrow \sqrt{y-1}+\sqrt{x}\neq 0\)
    Khi đó, PT (1) \(\Leftrightarrow x(y-1)-(y-1)^2=\frac{y-1-x}{\sqrt{y-1}+\sqrt{x}}\)
    \(\Leftrightarrow (y-1)(x-y+1)=\frac{y-1-x}{\sqrt{y-1}+\sqrt{x}}\)
    \(\Leftrightarrow (x-y+1)\left ( y-1+\frac{1}{\sqrt{y-1}+\sqrt{x}} \right )=0\)
    \(\Leftrightarrow x-y+1=0\Leftrightarrow y=x+1\) (do (*))
    Thay vào PT (2) ta được: \(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)     ĐK: \(\frac{4}{5}\leq x\leq 5 \ (**)\)
    \(\Leftrightarrow 3\sqrt{5-x}-(7-x)+3(\sqrt{5x-4}-x)=0\)
    \(\Leftrightarrow \frac{-4+5x-x^2}{3\sqrt{5-x}+(7-x)}+\frac{3(-4+5x-x^2)}{\sqrt{5x-4}+x}=0\)
    \(\Leftrightarrow (-4+5x-x^2)\left ( \frac{1}{3\sqrt{5-x}+(7-x)} +\frac{3}{\sqrt{5x-4}+x}\right )=0\)
    \(\Leftrightarrow -x^2+5x-4=0\) do (**)
    \(\Leftrightarrow \bigg \lbrack\begin{matrix} x=1\Rightarrow y=2\\ x=4\Rightarrow y=5 \end{matrix}\) (thỏa mãn (*),(**))
    Vậy nghiệm của hệ phương trình là: (1;2), (4;5).

      bởi Phong Vu 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF