Tìm giá trị lớn nhất của: \(P=(a^2+2)(b^2+2)(c^2+2)\)
Cho a, b, c ≥ 1 là các số thực dương thỏa mãn a + b + c = 6. Tìm giá trị lớn nhất của:
\(P=(a^2+2)(b^2+2)(c^2+2)\)
Câu trả lời (1)
-
Không mất tổng quát có thể giả sử \(a\geq b\geq c\). Suy ra \(6 = a +b + c \geq c+c+c\) . Suy ra \(c\geq 2;a+b\geq 4\)
Ta chứng minh bất đẳng thức \((a^2+2)(b^2+2)\leq (\left ( \frac{a+b}{2} \right )^2+2)^2\)
Thật vậy, bất đẳng thức tương đương với
\(a^2+b^2+2a^2+2b^2\leq \frac{(a+b)^4}{16}+(a+b)^2\Leftrightarrow 16(a-b)^2\leq (a+b)^4-16a^2b^2\)
\(\Leftrightarrow 16(a-b)^2\leq (a^2-b^2)^2+4ab(a-b)^2\)
\(\Leftrightarrow 16(a-b)^2\leq (a-b)^2\left [ (a+b)^2+4ab \right ]\)
Bất đẳng thức cuối cùng đúng bởi vì \((a+b)^2\geq 4^2=16\)
Đặt \(x=\frac{a+b}{2}\) ta có:
\((a^2+2)(b^2+2)(c^2+2)\leq (x^2+2)^2(c^2+2)=(x^2+2)^2((6-2x)^2+2)\)
Vì \(c\geq 1\) nên ta có \(2x+c=6\Rightarrow x\leq \frac{5}{2}\)
Hơn nữa \(2x=a+b\geq 4\) nên ta có \(x\in \left [ 2;\frac{5}{4} \right ]\)
Ta cần tìm giá trị lớn nhất của
\(\small f(x)=(x^2+2)^2\left [ (6-2x)^2+2 \right ]=4x^6-24x^5+54x^4-96x^3+168x^2-96x+152\) trên \(\small \left [ 2;\frac{5}{2} \right ]\)
\(\small f'(x)=12(x^2+2)(x-2)(x^2-3x+1)\) và \(\small f'(x)< 0,\forall x\in (2;\frac{5}{2})\)
Nhưng f(2) = 216 nên f(x) đạt GTLN bằng 216, dấu bằng xảy ra khi và chỉ khi x = 2.
Vậy ta có \(\small (a^2+2)(b^2+2)(c^2+2)\leq 216\), hay P đạt GTLN bằng 216, dấu bằng xảy ra khi và chỉ khi a =b = c = 2.bởi Tay Thu 09/02/2017Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
VIDEOYOMEDIA
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời