OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Trong không gian với hệ trục tọa độ \(Oxyz\), từ điểm \(A\left( 1;1;0 \right)\) kẻ các tiếp tuyến đến mặt cầu \(\left( S \right)\) có tâm \(I\left( -1;1;1 \right)\) và bán kính \(R=1\). Gọi \(M\left( a;b;c \right)\) là một trong các tiếp điểm ứng với các tiếp tuyến trên. Tìm GTLN của biểu thức \(T=\left| 2a-b+2c \right|\)?

    • A. 
      \(\frac{3-2\sqrt{41}}{15}\).  
    • B. 
      \(\frac{3+2\sqrt{41}}{5}\).  
    • C. 
      \(\frac{3+\sqrt{41}}{5}\).                      
    • D. 
      \(\frac{3+\sqrt{41}}{15}\).

    Lời giải tham khảo:

    Đáp án đúng: B

    Phương trình mặt cầu \(\left( S \right)\):\({{\left( x+1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=1\).

    Ta có \(\overrightarrow{IA}=\left( 2;0;-1 \right)\) nên \(AI=\sqrt{5}\) và \(AM=\sqrt{A{{I}^{2}}-{{R}^{2}}}=2\).

    Vậy \(M\) thuộc mặt cầu \(\left( {{S}'} \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{z}^{2}}=4\).

    \(\Rightarrow\) \(M\) thuộc đường tròn \(\left( C \right)\) là giao tuyến giữa \(\left( S \right)\) và \(\left( {{S}'} \right)\).

    \(\Rightarrow\)\(\left( C \right)\) thuộc mặt phẳng \(\left( P \right):2x-y+2=0\).

    Gọi \(H\) là hình chiếu của \(M\) trên \(AI\) thì \(IH.IA=I{{M}^{2}}\Leftrightarrow \frac{IH}{IA}=\frac{I{{M}^{2}}}{I{{A}^{2}}}=\frac{1}{5}\).

    Suy ra \(\overrightarrow{IH}=\frac{1}{5}\overrightarrow{IA}\) nên \(H\left( -\frac{3}{5};1;\frac{4}{5} \right)\) là tâm đường tròn \(\left( C \right)\).

    Bán kính đường tròn \(\left( C \right)\) bằng \(r=MH=\sqrt{M{{I}^{2}}-I{{H}^{2}}}=\frac{2}{\sqrt{5}}\).

    Gọi \(\left( Q \right)\) là mặt phẳng \(2x-y+2z=0\) và \(F\) là hình chiếu của \(H\) lên \(\left( Q \right)\).

    Khi đó ta có \(HF=d\left( H,\left( Q \right) \right)=\frac{1}{5}\) và \(\cos \alpha =\frac{2}{3\sqrt{5}}\); với \(\alpha\) là góc giữa \(\left( P \right)\) và \(\left( Q \right)\). \(\Rightarrow \sin \alpha =\frac{\sqrt{41}}{3\sqrt{5}}\).

    Gọi \(\left( d \right)\) là giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\).

    Gọi \(K\) là hình chiếu của \(H\) trên \(\left( d \right)\) nên \(HK=\frac{HF}{\sin \alpha }=\frac{3\sqrt{5}}{5\sqrt{41}}\).

    Gọi \({{M}_{0}}\) là giao điểm tia đối \(HK\) cắt \(\left( C \right)\)\(\Rightarrow {{M}_{0}}K=HK+r=\frac{3\sqrt{5}}{5\sqrt{41}}+\frac{2}{\sqrt{5}}\).

    Dễ dàng thấy với mọi \(M\in \left( C \right)\), khoảng cách lớn nhất từ \(M\) đến \(\left( Q \right)\) là \(d\left( {{M}_{0}};\left( Q \right) \right)\).

    \(d\left( M;\left( Q \right) \right)={{M}_{0}}K.\sin \alpha =\left( \frac{3\sqrt{5}}{5\sqrt{41}}+\frac{2}{\sqrt{5}} \right)\frac{\sqrt{41}}{3\sqrt{5}}=\frac{3+2\sqrt{41}}{15}\)

    Mặt khác \(d\left( M;\left( Q \right) \right)=\frac{\left| 2a-b+2c \right|}{3}\) nên \(T=3d\left( M;\left( Q \right) \right)\le 3d\left( {{M}_{0}};\left( Q \right) \right)=\frac{3+2\sqrt{41}}{5}\).

    Chọn B

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF