OPTADS360
NONE
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Tổng tất cả các giá trị nguyên của \(x\) để tam thức \(f\left( x \right) = 2{x^2} - 7x - 9\) nhận giá trị âm là 

    • A. 
      \(7\)          
    • B. 
      \(8\)    
    • C. 
      \(9\)       
    • D. 
      10 

    Lời giải tham khảo:

    Đáp án đúng: D

    \(f\left( x \right) = 0 \Leftrightarrow 2{x^2} - 7x - 9 = 0\)\( \Leftrightarrow \left( {2x - 9} \right)\left( {x + 1} \right) = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = {\rm{ \;}} - 1}\\{x = \frac{9}{2}}\end{array}} \right.\)

     

    Dựa vào bảng xét dấu ta có: \(f\left( x \right) = 2{x^2} - 7x - 9 < 0\)\( \Leftrightarrow {\rm{ \;}} - 1 < x < \frac{9}{2}\)

    Mà \(x \in \mathbb{Z} \Rightarrow x \in \left\{ {0;{\mkern 1mu} {\mkern 1mu} 1;{\mkern 1mu} {\mkern 1mu} 2;{\mkern 1mu} {\mkern 1mu} 3;{\mkern 1mu} {\mkern 1mu} 4} \right\}\)

    Tổng tất cả các số nguyên \(x\) thỏa mãn là: \(0 + {\mkern 1mu} 1 + 2 + 3 + 4 = 10\)

    Chọn D.

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF