OPTADS360
AANETWORK
AMBIENT
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Tính tổng tất cả các nghiệm của phương trình \(\cos 2x - {\tan ^2}x = \dfrac{{{{\cos }^2}x - {{\cos }^3}x - 1}}{{{{\cos }^2}x}}\) trên đoạn \(\left[ {1;70} \right]\).

    • A. 
      \(188\pi \)    
    • B. 
      \(263\pi \)  
    • C. 
      \(363\pi \)    
    • D. 
      \(365\pi \) 

    Lời giải tham khảo:

    Đáp án đúng: C

    \(\begin{array}{l}\,\,\,\,\,\cos 2x - {\tan ^2}x = \dfrac{{{{\cos }^2}x - {{\cos }^3}x - 1}}{{{{\cos }^2}x}}\\ \Leftrightarrow \dfrac{{\left( {2{{\cos }^2}x - 1} \right){{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x}} = \dfrac{{{{\cos }^2}x - {{\cos }^3}x - 1}}{{{{\cos }^2}x}}\\ \Leftrightarrow \left( {2{{\cos }^2}x - 1} \right){\cos ^2}x - {\sin ^2}x = {\cos ^2}x - {\cos ^3}x - 1\\ \Leftrightarrow {\cos ^2}x\left( {2{{\cos }^2}x - 1 + \cos x} \right) = 0\\ \Leftrightarrow 2{\cos ^2}x - 1 + \cos x = 0\,\,\left( {Do\,\,\cos x \ne 0} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\cos x =  - 1\\\cos x = \dfrac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \pi  + k2\pi \\x = \dfrac{\pi }{3} + m2\pi \\x =  - \dfrac{\pi }{3} + n2\pi \end{array} \right.\,\,\left( {k,m,n \in Z} \right)\end{array}\)

    \(\begin{array}{l}\pi  + k2\pi  \in \left[ {1;70} \right] \Leftrightarrow 1 \le \pi  + k2\pi  \le 70\,\,\left( {k \in Z} \right) \Leftrightarrow \dfrac{{1 - \pi }}{{2\pi }} \le k \le \dfrac{{70 - \pi }}{{2\pi }}\,\,\left( {k \in Z} \right) \Leftrightarrow k \in \left\{ {0;1;2;...;10} \right\}\\\dfrac{\pi }{3} + m2\pi  \in \left[ {1;70} \right] \Leftrightarrow 1 \le \dfrac{\pi }{3} + m2\pi  \le 70\,\,\left( {m \in Z} \right) \Leftrightarrow \dfrac{{1 - \dfrac{\pi }{3}}}{{2\pi }} \le m \le \dfrac{{70 - \dfrac{\pi }{3}}}{{2\pi }}\,\,\left( {m \in Z} \right) \Leftrightarrow m \in \left\{ {0;1;2;...;10} \right\}\\ - \dfrac{\pi }{3} + n2\pi  \in \left[ {1;70} \right] \Leftrightarrow 1 \le  - \dfrac{\pi }{3} + n2\pi  \le 70\,\,\left( {n \in Z} \right) \Leftrightarrow \dfrac{{1 + \dfrac{\pi }{3}}}{{2\pi }} \le n \le \dfrac{{70 + \dfrac{\pi }{3}}}{{2\pi }}\,\,\left( {n \in Z} \right) \Leftrightarrow n \in \left\{ {1;2;...;11} \right\}\end{array}\)

    Vậy tổng các nghiệm thuộc \(\left[ {1;70} \right]\) của phương trình trên là :

    \(\begin{array}{l}S = \left( {\pi  + \pi  + 2\pi  + \pi  + 4\pi  + ... + \pi  + 20\pi } \right) + \left( {\dfrac{\pi }{3} + \dfrac{\pi }{3} + 2\pi  + \dfrac{\pi }{3} + 4\pi  + ... + \dfrac{\pi }{3} + 20\pi } \right)\\\,\,\,\,\,\, + \left( { - \dfrac{\pi }{3} + 2\pi  - \dfrac{\pi }{3} + 4\pi  + .... - \dfrac{\pi }{3} + 22\pi } \right)\\S = 11\pi  + \pi \left( {2 + 4 + ... + 20} \right) + \dfrac{{11\pi }}{3} + \left( {2 + 4 + ... + 20} \right)\pi  - \dfrac{{11}}{3}\pi  + \left( {2 + 4 + ... + 22} \right)\pi \\S = 11\pi  + 110\pi  + \dfrac{{11}}{3}\pi  + 110\pi  - \dfrac{{11}}{3}\pi  + 132\pi \\S = 363\pi \end{array}\)

    Chọn C.

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF