OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Tìm tất cả các giá trị của tham số \(m\) để phương trình \({x^2} - 4x + 6 + m = 0\) có ít nhất \(1\) nghiệm dương.

    • A. 
      \(m \le  - 2.\)    
    • B. 
      \(m \ge  - 2.\) 
    • C. 
      \(m >  - 6.\)    
    • D. 
      \(m \le  - 6.\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    TH1: Phương trình có hai nghiệm trái dấu \( \Leftrightarrow ac < 0 \Leftrightarrow 1.\left( {m + 6} \right) < 0 \Leftrightarrow m <  - 6\).

    TH2: Phương trình có hai nghiệm dương (không nhất thiết phân biệt) \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\S \ge 0\\P \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m - 2 \ge 0\\2 > 0\\m + 6 \ge 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m \le  - 2\\m \ge  - 6\end{array} \right. \Leftrightarrow  - 6 \le m \le  - 2\).

    Vậy \(\left[ \begin{array}{l}m <  - 6\\ - 6 \le m \le  - 2\end{array} \right. \Leftrightarrow m \le  - 2\)

    Chọn A.

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF