-
Câu hỏi:
Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì sau \(4\dfrac{4}{5}\) giờ đầy bể. Nếu ngay từ đầu, chỉ mở vòi thứ nhất và 9 giờ sau mới mở thêm vòi thứ hai thì phải \(\dfrac{6}{5}\) giờ nữa mới đầy bể. Hỏi nếu ngay từ đầu, chỉ mở vòi thứ hai thì phải bao lâu mới đầy bể ?
-
A.
5 giờ
-
B.
6 giờ
-
C.
7 giờ
-
D.
8 giờ
Lời giải tham khảo:
Đáp án đúng: D
Gọi \(x\) (giờ) là thời gian để riêng vòi thứ nhất chảy đầy bể; \(y\) (giờ) là thời gian để riêng vòi thứ hai chảy đầy bể. Điều kiện của ẩn là: \(x;y > \dfrac{{24}}{5}\).
Khi đó, riêng vòi thứ nhất chảy trong 1 giờ thì được \(\dfrac{1}{x}\) bể.
Riêng vòi thứ hai chảy trong 1 giờ thì được \(\dfrac{1}{y}\) bể
Vậy hai vòi cùng chảy từ đầu trong \(4\dfrac{4}{5}\) giờ (tức \(\dfrac{{24}}{5}\) giờ) thì được \(\dfrac{{24}}{5}\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right)\) bể nước và đầy bể theo giả thiết ta có phương trình \(\dfrac{{24}}{5}\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right) = 1 \Leftrightarrow \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{5}{{24}}\)
Giả thiết thứ hai có nghĩa là mở vòi thứ nhất chảy trong \(\left( {9 + \dfrac{6}{5}} \right)\) giờ cộng với vòi thứ hai chảy trong \(\dfrac{6}{5}\) giờ nữa thì đầy bể. Điều đó được mô tả bởi phương trình \(\dfrac{{51}}{5}.\dfrac{1}{x} + \dfrac{6}{5}.\dfrac{1}{y} = 1\)
Ta có hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{5}{{24}}\\\dfrac{{51}}{5}.\dfrac{1}{x} + \dfrac{6}{5}.\dfrac{1}{y} = 1\end{array} \right.\)
Đặt \(\dfrac{1}{x} = u;\dfrac{1}{y} = v\,\) ta có hệ phương trình bậc nhất hai ẩn \(u\) và \(v:\) \(\left\{ \begin{array}{l}u + v = \dfrac{5}{{24}}\\\dfrac{{51}}{5}u + \dfrac{6}{5}v = 1\end{array} \right.\)
Ta giải hệ này bằng phương pháp cộng đại số
\(\left\{ \begin{array}{l}u + v = \dfrac{5}{{24}}\\\dfrac{{51}}{5}u + \dfrac{6}{5}v = 1\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}\dfrac{6}{5}u + \dfrac{6}{5}v = \dfrac{1}{4}\\\dfrac{{51}}{5}u + \dfrac{6}{5}v = 1\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}u + v = \dfrac{5}{{24}}\\9u = \dfrac{3}{4}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}u = \dfrac{1}{{12}}\\v = \dfrac{1}{8}\end{array} \right.\,\left( {tm} \right)\)
Trở về phương trình ban đầu, ta có \(x = \dfrac{1}{u} = 12\left( {tm} \right)\) và \(y = \dfrac{1}{v} = 8\left( {tm} \right)\)
Vậy vòi thứ nhất chảy riêng trong \(12\) giờ thì đầy bể, vòi thứ hai chảy riêng trong \(8\) giờ thì đầy bể.
Chọn D
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

CÂU HỎI KHÁC
- Tìm nghiệm tất cả nghiệm nguyên của phương trình sau 3x - 2y = 5.
- Cho đường thẳng nào sau đây có biểu diễn hình học là đường thẳng song song với trục hoành?
- Chọn khẳng định đúng. Hình vẽ sau đây biểu diễn tập nghiệm của phương trình nào?
- Cho biết nghiệm của phương trình (x^{2}-24 x+70=0\) là?
- Nghiệm của phương trình sau \(x^{2}-(1+\sqrt{2}) x+\sqrt{2}=0\) là:
- Tìm m để phương trình có nghiệm duy nhất sau: \(mx^2 + (4m + 2)x - 4m = 0\)
- Cho hai tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại M, biết \(\widehat {AMB}\) = \(50^0\). Tinh \(\widehat {AMO}; \widehat {BOM}\)
- Cho biết tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H . vẽ đường kính AF. Chọn câu đúng?
- Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC tại I. Tính độ dài BC biết OA = 9cm,O'A = 4cm
- Cho một hình quạt tròn có bán kính 20cm và góc ở tâm là \(144^0\). Người ta uốn hình quạt này thành một hình nón. Tính thể tích của khối nón đó.
- Cho tam giác ABC đều cạnh a , đường trung tuyến AM. Quay tam giác ABC quanh cạnh AM. Tính diện tích toàn phần của hình nón tạo thành.
- Nếu một mặt cầu có diện tích là bằng \(1017,36 cm^2\) thì thể tích hình cầu đó là:
- Cho đường thẳng d có phương trình sau (2m - 4)x + (m - 1)y = m - 5. Tìm các giá trị của tham số m để d đi qua gốc tọa độ.
- Cho đường thẳng d có phương trình (m - 2)x + (3m - 1)y = 6m - 2. Hãy tìm các giá trị của tham số m để d đi qua gốc tọa độ.
- Tìm số nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}4x + 2y = 1\\2x + y = 2\end{array} \right.\)
- Cho phương trình sau \((m - 2)x^2 - 2(m + 1)x + m = 0\). Tìm các giá trị của m để phương trình đã cho có một nghiệm
- Cho phương trình \(mx^2 - 4(m - 1)x + 2 = 0\). Tìm các giá trị của m để phương trình đã cho vô nghiệm.
- Cho tam giácABC, gọi I là tâm đường tròn nội tiếp tam giác, P là một điểm trong tam giác thỏa mãn \(\widehat {PBC} + \widehat {PCA} = \widehat {PBC} + \widehat {PCB}\).
- Cho biết đường tròn đường kính AB cố định, M là một điểm chạy trên đường tròn. Trên tia đối của tia MA lấy điểm I sao cho MI = 2MB. Quỹ tích các điểm I là:
- Số đo góc \(\widehat {ADH}\) là:
- Tính tỉ số giữa thể tích hình cầu và thể tích hình trụ.
- Cho một hình cầu và một hình lập phương ngoại tiếp nó. Nếu diện tích diện tích toàn phần của hình lập phương là \(24cm^2\) thì diện tích mặt cầu là:
- Tìm số nghiệm của hệ phương trình sau:\(\left\{ \begin{array}{l}4x - y = 8\\x - \dfrac{1}{4}y = 2\end{array} \right.\)
- Tìm số nghiệm của hệ phương trình sau đây: \(\left\{ \begin{array}{l} - 2x + y = 3\\x + 2y = 1\end{array} \right.\)
- Hệ hai phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l} {\rm{ax}} + by = c\\ a'x + b'y = c' \end{array} \right.\) (các hệ số khác ) vô nghiệm khi
- Cho phương trình sau \((m - 3) )x^2 - 2mx + m - 6 = 0\). Tìm các giá trị của m để phương trình vô nghiệm
- Cho phương trình \((m + 1)x^2 - 2(m + 1)x + 1 = 0\). Hãy tìm các giá trị của m để phương trình có hai nghiệm phân biệt.
- Cho biết tam giác ABC không cân, nội tiếp đường tròn (O, BD ) là đường phân giác của góc góc ABC.
- Tứ giác ABCD nội tiếp (O). Hai đường chéo AC và BD cắt nhau tại I. Vẽ đường tròn ngoại tiếp tam giác ABI. Tiếp tuyến của đường tròn này tại I cắt AD và BC lần lượt M và N. Chọn câu sai:
- Tính diện tích mặt cầu thu được khi quay nửa đường tròn ngoại tiếp hình chữ nhật ABCD quay quanh đường thẳng MN với M là trung điểm AD, N là trung điểm BC
- Nghiệm của hệ phương trình sau \(\left\{ \begin{array}{l}x\sqrt 2 - y\sqrt 3 = 1\\x + y\sqrt 3 = \sqrt 2 \end{array} \right.
- Xác đinh a và b để đồ thị hàm số sau \(y = ax + b\) đi qua hai điểm A(2 ; 2) và B(-1 ; 3).
- Cho biết một đa thức bằng đa thức 0 khi và chỉ khi tất cả các số của nó bằng 0.
- Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì sau \(4\dfrac{4}{5}\) giờ đầy bể. Nếu ngay từ đầu, chỉ mở vòi thứ nhất và 9 giờ sau mới mở thêm vòi thứ hai thì phải \(\dfrac{6}{5}\) giờ nữa mới đầy bể.
- Gọi \(x_1;x_2\) là hai nghiệm của phương trình sau \(x^2 - 3x + 2 = 0\). Tính tổng \(S=x_1+x_2; P=x_1x_2\)
- Hai số sau u = m; v = 1 - m là nghiệm của phương trình nào dưới đây?
- Cho biết hai số có tổng là S và tích là P với \( {S^2} \ge 4P\). Khi đó hai số đó là hai nghiệm của phương trình nào dưới đây?
- Nghiệm bé nhất của phương trình sau \({x^4} - 13{x^2} + 36 = 0\) là bao nhiêu?
- Tam giác ABC nội tiếp đường tròn (O;R) có AB = 5cm,AC = 12cm và đường cao AH = 3cm (H nằm ngoài BC), khi đó R b�
- Cho biết cung AB trên đường tròn (O ; R) có số đo \({30^o}\) và có độ dài 1 cm. Tính bán kính R của đường tròn.