-
Câu hỏi:
Gọi \({x_1};\,{x_2}\) là các nghiệm của phương trình \({x^2} + 4x - 15 = 0\). Tính \(\left| {{x_1} - {x_2}} \right|\).
-
A.
8
-
B.
\(\sqrt {76} \)
-
C.
4
-
D.
\(\sqrt {56} \)
Lời giải tham khảo:
Đáp án đúng: B
Do \({x_1};\,{x_2}\) là các nghiệm của phương trình \({x^2} + 4x - 15 = 0\) nên áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 4\\{x_1}{x_2} = - 15\end{array} \right.\).
Vậy \(\left| {{x_1} - {x_2}} \right| = \sqrt {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \)\( = \sqrt {{{\left( { - 4} \right)}^2} - 4.\left( { - 15} \right)} \)\( = \sqrt {76} \).
Đáp án B.
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho parabol \(\left( P \right):\,\,y = a{x^2} + bx + c\) có a < 0 và tọa độ đỉnh là (2;5). Tìm điều kiện của tham số m để phương trình \(a{x^2} + bx + c = m\) vô nghiệm.
- Cho tam giác đều ABC có cạnh bằng a. Khi đó \(\left| {\overrightarrow {AB} + \overrightarrow {CA} } \right|\) bằng:
- Gọi A, B là các giao điểm của đồ thị hàm số \(f\left( x \right) = 3{x^2} - 2\) và \(g\left( x \right) = 2{x^2} - x + 4\). Phương trình đường thẳng AB là:
- Tìm số phần tử của tập hợp \(A = \left\{ {x \in \mathbb{Z}; - 3 < x \le 4} \right\}\).
- Tìm giao điểm của parabol \(\left( P \right):\,\,y = - {x^2} - 2x + 5\) với trục Oy.
- Cho tam giác ABC có AM là đường trung tuyến. Gọi I là trung điểm của AM. Trong các mệnh đề sau, mệnh đề nào đúng.
- Cho biết tập hợp A gồm 3 phần tử. Hỏi tập hợp A có bao nhiêu tập con.
- Cho hàm số \(y = \left( {m - 5} \right){x^2} - 5x + 1\). Hàm số đã cho là hàm số bậc nhất khi:
- Hàm số đã cho nào dưới đây là hàm số chẵn trên tập xác định của nó?
- Gọi S là tập hợp tất cả các giá trị của tham số m để đồ thị hàm số \(y = {x^2} + 5x + 2m\) cắt trục Ox tại hai điểm phân biệt A, B thỏa mãn OA = 4OB. Tổng các phần tử của S bằng:
- Xác định hàm số bậc hai sau \(y = a{x^2} - x + c\) biết đồ thị hàm số đi qua A(1;-2) và B(2;3).
- Hàm số \(y = - {x^2} + 5x - 6\) đồng biến trên khoảng nào dưới đây?
- Cho đồ thị \(\left( P \right):\,\,y = {x^2} + 4x - 2\). Điểm nào dưới đây thuộc (P)?
- Gọi \({m_0}\) là giá trị của m để hệ phương trình \(\left\{ \begin{array}{l}x + 3y = m\\mx + y = m - \dfrac{2}{9}\end{array} \right.\) có vô số nghiệm. Khi đó
- Gọi \({x_1};\,{x_2}\) là các nghiệm của phương trình \({x^2} + 4x - 15 = 0\). Tính \(\left| {{x_1} - {x_2}} \right|\).
- Đồ thị hàm số \(y = 3{x^2} + 4x - 1\) nhận đường thẳng nào dưới đây làm trục đối xứng?
- Tìm tập nghiệm của phương trình \(\sqrt {3{x^2} - 4x + 4} = 3x + 2\).
- Tọa độ đỉnh của parabol \(\left( P \right):\,\,y = - {x^2} + 2x - 3\) là:
- Cho cácphát biểu như dưới đây, cho biết phát biểu nào dưới đây là mệnh đề sai?
- Cho tập hợp A = {0;1;2;3;4} và B = {0;2;4;6;8}. Hỏi tập hợp \(\left( {A\backslash B} \right) \cup \left( {B\backslash A} \right)\) có bao nhiêu phần tử?
- Đường thẳng đi qua hai điểm A(-1;4) và B(2;-7) có phương trình là:
- Tìm tập hợp tất cả các giá trị của tham số m để hàm số \(y = \sqrt {{x^2} + {m^2}} + \sqrt {{x^2} - m} \) có tập xác định là R.
- Trong mặt phẳng tọa độ Oxy, cho ba điểm A(-6;0), B(0;2) và C(-6;2). Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC.
- Tìm tập xác định của hàm số \(y = \sqrt {x + 2} - \dfrac{2}{{x - 3}}\).
- Cho hình thoi ABCD có \(\angle BAD = {60^0}\) và BA = a. Gọi M, N lần lượt là trung điểm của AD, DC. Tính \(\overrightarrow {BM} .\overrightarrow {BN} \) bằng:
- Cho phương trình \({x^3} + 3{x^2} + \left( {4{m^2} - 12m + 11} \right)x + {\left( {2m - 3} \right)^2} = 0.\) Tập hợp tất cả các giá trị của tham số m để phương trình có 3 nghiệm phân biệt.
- Cho tam giác ABC, lấy các điểm M, N trên cạnh BC sao cho BM = MN = NC. Gọi \({G_1},\,\,{G_2}\) lần lượt là trọng tâm tam giác ABN, ACM. Biết rằng \(\overrightarrow {{G_1}{G_2}} \) được biểu diễn theo hai vecto \(\overrightarrow {AB} ,\,\,\overrightarrow {AC} \) dưới dạng \(\overrightarrow {{G_1}{G_2}} = x\overrightarrow {AB} + y\overrightarrow {AC} .\) Khi đó x + y bằng:
- Trong mặt phẳng tọa độ Oxy, cho các vecto \(\overrightarrow a = \left( {3; - 1} \right),\,\,\overrightarrow b = \left( {5; - 4} \right),\,\,\overrightarrow c = \left( {1; - 5} \right).\) Biết \(\overrightarrow c = x\overrightarrow a + y\overrightarrow b .\) Tính x + y.
- Cho hình chữ nhật ABCD có AB = a, AC = 2a. Tính góc giữa hai vecto \(\overrightarrow {CA} \) và \(\overrightarrow {DC} .\)
- Hàm số nào dưới đây đồng biến trên tập sau \(\mathbb{R}?\)
- Cho hệ phương trình \(\left\{ \begin{array}{l}x - \left( {m + 1} \right)y = m - 2\\2mx + \left( {m - 2} \right)y = 4\end{array} \right.\). Biết rằng có hai giá trị của tham số m là m1và m2 để hệ phương trình có nghiệm \(\left( {{x_0};2} \right)\). Tính m1 + m2.
- Phương trình \(\left| {3 - x} \right| = \left| {2x - 5} \right|\) có hai nghiệm \({x_1},\,\,{x_2}.\) Tính \({x_1} + {x_2}.\)
- Có bao nhiêu giá trị nguyên của tham số m để phương trình \({\left( {{x^2} + 6x + 10} \right)^2} + m = 10{\left( {x + 3} \right)^2}\) có 4 nghiệm phân biệt?
- Trong mặt phẳng tọa độ Oxy, cho các điểm A(4; 3), B(0; –1), C(1;–2). Tìm tọa độ điểm M biết rằng vetco \( - 2\overrightarrow {MA} + 3\overrightarrow {MB} - 3\overrightarrow {MC} \) có tọa độ là (1; 7).
- Cho phương trình \({x^2} + 2x - {m^2} = 0.\) Biết rằng có hai giá trị \({m_1},\,\,{m_2}\) của tham số m để phương trình có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn \(x_1^3 + x_2^3 + 10 = 0.\) Tính \({m_1}.{m_2}.\)
- Trong mặt phẳng tọa độ Oxy, cho các điểm \(A\left( {m; - 1} \right),\,\,B\left( {2;\,\,1 - 2m} \right),\,\,C\left( {3m + 1; - \dfrac{7}{3}} \right).\) Biết rằng có hai giá trị \({m_1},\,\,{m_2}\) của tham số m để A, B, C thẳng hàng. Tính \({m_1} + {m_2}.\)
- Gọi (a; b; c) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}5x + y + z = 5\\x - 3y + 2z = 11\\ - x + 2y + z = - 3\end{array} \right..\) Tính \({a^2} + {b^2} + {c^2}.\)
- Tìm tập nghiệm của phương trình \(\sqrt {4x + 1} + 5 = 0.\)
- Trong mặt phẳng với hệ trục tọa độ \(\left( {O;\,\,\overrightarrow i ;\,\,\overrightarrow j } \right)\) cho điểm M thỏa mãn \(\overrightarrow {OM} = - 2\overrightarrow i + 3\overrightarrow j .\) Tọa độ của M là:
- Gọi M, N lần lượt là trung điểm các cạnh CD, AB của hình bình hành ABCD. Hãy tìm mệnh đề đúng trong các mệnh đề sau: