-
Câu hỏi:
Chọn khẳng định sai trong các khẳng định sau:
-
A.
Hàm số \(y=5{{x}^{3}}+x-2\) liên tục trên \(\mathbb{R}\).
-
B.
Hàm số \(y=\frac{3x-5}{x+3}\) liên tục trên \(\mathbb{R}\).
-
C.
Hàm số \(y=\frac{2{{x}^{2}}-x}{x+1}\) liên tục trên khoảng \(\left( -\infty ;-1 \right)\) và \(\left( -1;+\infty \right)\)
-
D.
Hàm số \(y={{x}^{5}}+3{{x}^{3}}+5\) liên tục trên \(\mathbb{R}\).
Lời giải tham khảo:
Đáp án đúng: B
Chọn B.
Xét hàm số \(y=\frac{3x-5}{x+3}\) ta có.
Tập xác định là \(D=\mathbb{R}\backslash \left\{ -3 \right\}\).
Hàm số \(y=\frac{3x-5}{x+3}\) liên tục trên khoảng \(\left( -\infty ;-3 \right)\) và \(\left( -3;+\infty \right)\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Chọn khẳng định sai trong các khẳng định dưới đây? Hàm số \(f\left( x \right)\) xác định trên \(\left( a;b \right)\) được gọi là liên tục tại \({{x}_{0}}\in \left( a;b \right)\) nếu \(\underset{x\to {{x}_{0}}^{+}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{x}_{0}}^{-}}{\mathop{\lim }}\,f\left( x \right)=f\left( {{x}_{0}} \right)\).
- Cho hàm số \(f\left( x \right)=\left\{ \begin{array}{*{35}{l}} \frac{\sqrt{x}-2}{x-4} & \mathrm{khi} & x>4\\ ax\text{+}\frac{\text{5}}{\text{4}} & \mathrm{khi} & x\le \text{4}\\ \end{array} \right.\)
- Tìm giá trị thực của tham số \(m\) để hàm số \(f\left( x \right)=\left\{ \begin{array}{*{35}{l}} \frac{{{x}^{2}}-x-2}{x-2} & \mathrm{khi} & x\ne 2 \\ m & \mathrm{khi} & x=2 \\ \end{array} \right.\) liên tục tại \(x=2\).
- Cho hàm số \(f\left( x \right)=\left\{ \begin{array}{*{35}{l}} \frac{{{x}^{3}}-{{x}^{2}}+2x-2}{x-1} & \mathrm{khi} & x\ne 1 \\ 3x+m & \mathrm{khi} & x=1 \\ \end{array} \right.\)
- Cho hàm số \(f\left( x \right)=\left\{ \begin{array}{*{35}{l}} 3x+a-1 & \mathrm{khi} & x\le 0 \\ \frac{\sqrt{1+2x}-1}{x} & \mathrm{khi} & x>0 \\ \end{array} \right.\).
- Hàm số \(y=f\left( x \right)\) liên tục tại điểm \({{x}_{0}}\) khi nào?
- Trong các hàm số sau, hàm số liên tục trên \(\mathbb{R}\) là
- Hàm số nào gián đoạn tại \(x=-2\)?
- Chọn khẳng định sai trong các khẳng định sau: Hàm số \(y=5{{x}^{3}}+x-2\) liên tục trên \(\mathbb{R}\).
- Cho hàm số \(f\left( x \right)=\left\{ \begin{array}{*{35}{l}} 2b{{x}^{2}}-4 & \mathrm{khi} & x\le 3 \\ 5 & \mathrm{khi} & x>3 \\ \end{array} \right.\)