OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Chọn khẳng định sai trong các khẳng định dưới đây?

    • A. 
      Hàm số \(f\left( x \right)\) xác định trên \(\left( a;b \right)\) được gọi là liên tục tại \({{x}_{0}}\in \left( a;b \right)\) nếu \(\underset{x\to {{x}_{0}}^{+}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{x}_{0}}^{-}}{\mathop{\lim }}\,f\left( x \right)=f\left( {{x}_{0}} \right)\).
    • B. 
      Nếu hàm số \(f\left( x \right)\) liên tục trên \(\left[ a;b \right]\) thì \(f\left( x \right)\) đạt giá trị nhỏ nhất, giá trị lớn nhất trên \(\left[ a;b \right]\).
    • C. 
      Nếu hàm số \(f\left( x \right)\) liên tục trên \(\left[ a;b \right]\) và \(f\left( a \right).f\left( b \right)>0\) thì phương trình \(f\left( x \right)=0\) không có nghiệm trên \(\left( a;b \right)\).
    • D. 
      Các hàm đa thức, hàm lượng giác liên tục tại mọi điểm mà nó xác định.

    Lời giải tham khảo:

    Đáp án đúng: C

    Chọn C.

    Giả sử \({{x}_{0}}\in \left[ a;b \right]\), \(f\left( {{x}_{0}} \right)<0\) khi đó \(f\left( a \right).f\left( {{x}_{0}} \right)<0\) nên phương trình \(f\left( x \right)=0\) có ít nhất một nghiệm thuộc khoảng \(\left( a;{{x}_{0}} \right)\).

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF