-
Câu hỏi:
Cho tam giác ABC có \(\widehat A = {70^0}\), các đường phân giác BE và CD của góc B và góc C cắt nhau tại I. Tính \(\widehat {BIC}\)
-
A.
1250
-
B.
1000
-
C.
1050
-
D.
1400
Lời giải tham khảo:
Đáp án đúng: A
Xét tam giác ABC có: \(\widehat A + \widehat {ACB} + \widehat {ABC} = {180^0}\) (định lí tổng ba góc trong một tam giác)
\( \Rightarrow \widehat {ACB} + \widehat {ABC} = {180^0} - \widehat A = {180^0} - {70^0} = {110^0}\left( 1 \right)\)
Vì CD là phân giác của \(\widehat {ACB}\) \( \Rightarrow \widehat {DCB} = \frac{{\widehat {ACB}}}{2}\left( 2 \right)\) (Tính chất tia phân giác)
Vì BE là phân giác của \(\widehat {ABC} \Rightarrow \widehat {CBE} = \frac{{\widehat {ABC}}}{2}\left( 3 \right)\) (Tính chất tia phân giác)
Từ (1), (2) và (3) \( \Rightarrow \widehat {DCB} + \widehat {CBE} = \frac{{\widehat {ACB}}}{2} + \frac{{\widehat {ABC}}}{2} = \frac{{\widehat {ACB} + \widehat {ABC}}}{2} = {110^0}:2 = {55^0}\)
hay \(\widehat {ICB} + \widehat {IBC} = {55^0}\left( * \right)\)
Xét tam giác BIC có: \(\widehat {ICB} + \widehat {IBC} + \widehat {BIC} = {180^0}\left( {**} \right)\)
Từ (*) và (**) \( \Rightarrow \widehat {BIC} = {180^0} - \left( {\widehat {ICB} + \widehat {IBC}} \right) = {180^0} - {55^0} = {125^0}\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Điểm E nằm trên tia phân giác góc A của tam giác ABC ta có:
- Cho tam giác ABC có hai đường phân giác CD và BE cắt nhau tại I. Khi đó
- Chọn phát biểu đúng nhất
- Cho tam giác ABC có (widehat A = {70^0}), các đường phân giác BE và CD của góc B và góc C cắt nhau tại I.
- Cho tam giác ABC, các tia phân giác của góc B và A cắt nhau tại điểm O.