OPTADS360
AANETWORK
AMBIENT
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hình trụ có hai đáy là hai hình tròn \(\left( {O;R} \right)\) và \(\left( {O';R} \right)\). \(AB\) là một dây cung của đường tròn \(\left( {O;R} \right)\) sao cho tam giác \(O'AB\) là tam giác đều và mặt phẳng \(\left( {O'AB} \right)\) tạo với mặt phẳng chứa đường tròn \(\left( {O;R} \right)\) một góc \(60^\circ \). Tính theo \(R\) thể tích \(V\) của khối trụ đã cho. 

    • A. 
      \(V = \dfrac{{\pi \sqrt 7 {R^3}}}{7}\).
    • B. 
      \(V = \dfrac{{3\pi \sqrt 5 {R^3}}}{5}\).
    • C. 
      \(V = \dfrac{{\pi \sqrt 5 {R^3}}}{5}\).
    • D. 
      \(V = \dfrac{{3\pi \sqrt 7 {R^3}}}{7}\).

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi \(I\) là trung điểm của \(AB\) thì \(O'I \bot AB,OI \bot AB\).

    Suy ra góc giữa \(\left( {O'AB} \right)\) và \(\left( {O;R} \right)\) là góc giữa \(O'I\) và \(OI\) hay \(\widehat {O'IO} = {60^0}\).

    Đặt \(AI = x \Rightarrow AB = 2x\).

    Tam giác vuông \(OIA\) có \(OA = R,AI = x\) \( \Rightarrow OI = \sqrt {O{A^2} - A{I^2}}  = \sqrt {{R^2} - {x^2}} \).

    Tam giác \(O'AB\) đều cạnh \(AB = 2x \Rightarrow O'I = \dfrac{{2x\sqrt 3 }}{2} = x\sqrt 3 \).

    Tam giác \(O'OI\) vuông tại \(O\) nên \(\cos {60^0} = \dfrac{{OI}}{{O'I}} \Leftrightarrow \dfrac{1}{2} = \dfrac{{\sqrt {{R^2} - {x^2}} }}{{x\sqrt 3 }} \Leftrightarrow x = \dfrac{{2R}}{{\sqrt 7 }}\).

    Suy ra \(OO' = O'I.\sin {60^0} = \dfrac{{2R}}{{\sqrt 7 }}.\sqrt 3 .\dfrac{{\sqrt 3 }}{2} = \dfrac{{3R}}{{\sqrt 7 }}\).

    Thể tích khối trụ \(V = \pi {R^2}h = \pi {R^2}.\dfrac{{3R}}{{\sqrt 7 }} = \dfrac{{3\pi \sqrt 7 {R^3}}}{7}\).

    Chọn D.

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF