-
Câu hỏi:
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và \(SA = a\sqrt 3 .\) Tính thể tích V khối chóp S.ABC?
-
A.
\(V = \frac{{{a^3}}}{{12}}\)
-
B.
\(V = \frac{{{a^3}}}{2}\)
-
C.
\(V = \frac{{{a^3}}}{4}\)
-
D.
\(V = \frac{{{a^3}}}{6}\)
Lời giải tham khảo:
Đáp án đúng: C
\(V = \frac{1}{3}SA.{s_{day}} \)
\(= \frac{1}{3}a\sqrt 3 .\frac{1}{2}.a.a.\sin {60^0} = \frac{1}{4}{a^3}.\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
- Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và \(SA = a\sqrt 3 .\) Tính thể tích V khối chóp S.ABC?
- Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và thể tích của khối chóp đó bằng \(\frac{{{a^3}}}{4}.\) Tính độ dài cạnh bên SA.
- Cho lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Tính thể tích V của khối tứ diện ABA’C’
- Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật có \(AB = 3a,{\rm{ }}AC = 5a\) và cạnh bên SB vuông góc với mặt phẳng đáy. Biết thể tích khối chóp bằng \(6a^3\). Tính khoảng cách từ đỉnh B đến mặt phẳng (SAD).
- Cho hình trụ có hai đường tròn đáy lần lượt là (O); (O’). Biết thể tích khối nón có đỉnh là O và đáy là hình tròn (O’) là \(a^3\) tính thể tích V của khối trụ đã cho?
- Cho mặt cầu có diện tích bằng \(\frac{{8\pi {a^2}}}{3}.\) Tìm bán kính R của mặt cầu.
- Trong không gian với hệ Oxyz, cho hai điểm A(1;2;3) và B(3;2;1). Viết phương trình mặt phẳng trung trực của đoạn thẳng AB
- Trong không gian với hệ trục tọa độ Oxyz, viết phương trình của mặt cầu đi qua ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và có tâm thuộc mặt phẳng (P):x+y+z−2=0
- Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 1}}{3}\) và \(\left( P \right):2x + y - z = 0.\) Viết phương trình mặt phẳng (Q) chứa đường thẳng d và vuông góc mặt phẳng (P).