OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hàm số \(y={{x}^{3}}-3x+2\) có đồ thị như hình dưới. Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({{x}^{3}}-3x+2-2m=0\) có 3 nghiệm thực phân biệt?

    • A. 
      \(0 < m < 4\).               
    • B. 
      \(0 < m < 2\).           
    • C. 
      \(0\le m\le 4\).
    • D. 
      \(0\le m\le 2\).

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có: \({{x}^{3}}-3x+2-2m=0\Leftrightarrow 2{{x}^{3}}-3x+2=2m\text{ }\left( 1 \right).\)

    Số nghiệm của phương trình \(\left( 1 \right)\)bằng số giao điểm của đồ thị hàm số \(y={{x}^{3}}-3x+2\) và đường thẳng \(y=2m.\)

    Từ đồ thị ta suy ra: Phương trình đã cho có ba nghiệm thực phân biệt khi và chỉ khi \(0<2m<4\Leftrightarrow 0 < m < 2\).

    Vậy \(0 < m < 2\).           

    Chọn B

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF