OPTADS360
AANETWORK
AMBIENT
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hàm số \(y = \frac{1}{3}{x^3} - 2m{x^2} + \left( {m - 1} \right)x + 2{m^2} + 1\) \((m\) là tham số). Xác định khoảng cách lớn nhất từ gốc tọa độ \(O\left( {0;0} \right)\) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên. 

    • A. 
      \(\frac{2}{9}\) 
    • B. 
      \(\sqrt 3 \) 
    • C. 
      \(2\sqrt 3 \) 
    • D. 
      \(\frac{{\sqrt {10} }}{3}\) 

    Lời giải tham khảo:

    Đáp án đúng: D

    TXĐ: \(D = \mathbb{R}\). Ta có \(y' = {x^2} - 4mx + m - 1\).

    Lấy \(y\) chia cho \(y'\)  ta được \(y = y'\left( {\frac{1}{3}x - \frac{2}{3}m} \right) + \left( { - \frac{8}{3}{m^2} + \frac{2}{3}m - \frac{2}{3}} \right)x + \frac{8}{3}{m^2} - \frac{2}{3}m + 1\)

    \( \Rightarrow \) Phương trình đường thẳng đi qua 2 điểm cực trị của hàm số là \(y = \left( { - \frac{8}{3}{m^2} + \frac{2}{3}m - \frac{2}{3}} \right)x + \frac{8}{3}{m^2} - \frac{2}{3}m + 1\).

    \(\begin{array}{l} \Leftrightarrow \left( { - \frac{8}{3}{m^2} + \frac{2}{3}m - \frac{2}{3}} \right)x - y + \frac{8}{3}{m^2} - \frac{2}{3}m + 1 = 0\\ \Leftrightarrow \left( { - 8{m^2} + 2m - 2} \right)x - 3y + 8{m^2} - 2m + 3 = 0\,\,\left( d \right)\\ \Rightarrow d\left( {O;d} \right) = \frac{{\left| {8{m^2} - 2m + 3} \right|}}{{\sqrt {{{\left( { - 8{m^2} + 2m - 2} \right)}^2} + 9} }} = \sqrt {\frac{{{{\left( {8{m^2} - 2m + 3} \right)}^2}}}{{{{\left( { - 8{m^2} + 2m - 2} \right)}^2} + 9}}} \end{array}\)

    Đặt \(t =  - 8{m^2} + 2m - 2 \Rightarrow  - t + 1 = 8{m^2} - 2m + 3\)

    \( \Rightarrow d\left( {O;d} \right) = \sqrt {\frac{{{{\left( { - t + 1} \right)}^2}}}{{{t^2} + 9}}} \).

    Xét hàm số \(f\left( t \right) = \frac{{{{\left( { - t + 1} \right)}^2}}}{{{t^2} + 9}}\) ta có \(f'\left( t \right) = \frac{{ - 2\left( { - t + 1} \right)\left( {{t^2} + 9} \right) - {{\left( { - t + 1} \right)}^2}.2t}}{{{{\left( {{t^2} + 10} \right)}^2}}} = \frac{{2{t^2} + 16t - 18}}{{{{\left( {{t^2} + 10} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t =  - 9\end{array} \right.\).

    BBT:

    \( \Rightarrow d{\left( {O;d} \right)_{\max }} = \frac{{\sqrt {10} }}{3}\) .

    Chọn D.

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF